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ABSTRACT

A recent study by Waller and colleagues evaluated the reliability, specificity, and generalizability of using functional connectivity data to identify individuals from a
group. The authors note they were able to replicate identification rates in a larger version of the original Human Connectome Project (HCP) dataset. However, they
also report lower identification accuracies when using historical neuroimaging acquisitions with low spatial and temporal resolution. The authors suggest that their
results indicate connectomes derived from historical imaging data may be similar across individuals, to the extent that this connectome-based approach may be
inappropriate for precision psychiatry and the goal of drawing inferences based on subject-level data. Here we note that the authors did not take into account factors
affecting data quality and hence identification rates, independent of whether a low spatiotemporal resolution acquisition or a high spatiotemporal resolution
acquisition is used. Specifically, we show here that the amount of data collected per subject and in-scanner motion are the predominant factors influencing identi-
fication rates, not the spatiotemporal resolution of the acquisition. To do this, we investigated identification rates in the HCP dataset as a function of the amount of
data and motion. Using a dataset from the Consortium for Reliability and Reproducibility (CoRR), we investigated the impact of multiband versus non-multiband
imaging parameters; that is, high spatiotemporal resolution versus low spatiotemporal resolution acquisitions. We show scan length and motion affect identifica-
tion, whereas the imaging protocol does not affect these rates. Our results suggest that motion and amount of data per subject are the primary factors impacting

individual connectivity profiles, but that within these constraints, individual differences in the connectome are readily observable.

Introduction

A key goal of precision psychiatry is leveraging individual differences
in neuroimaging data to generate predictive models related to behavior.
As highlighted by Waller et al. (2017), finding reliable markers across
datasets remains an important part of this process. As such, they inves-
tigate the generalizability of a previous method using functional con-
nectivity fMRI data to identify individuals from a group (‘connectome
fingerprinting’; Finn et al., 2015). Waller et al. demonstrate that identi-
fication can be replicated in the same high spatiotemporal resolution
dataset (i.e. acquired using multiband acquisition sequences), consistent
with other work to replicate the method (Finn et al., 2017; Kaufmann
et al., 2017; Vanderwal et al., 2017), though they note lower accuracies
using a dataset acquired with lower spatiotemporal resolution (i.e. ac-
quired using non-multiband acquisition sequences). In addition, the au-
thors also show that the specificity of the identification procedure is
lower when a within-subject correlation threshold is introduced into the

ID pipeline. Therefore, the authors argue that the identification method
may not generalize to datasets with lower spatiotemporal resolution
because individual features may only be detectable in data acquired with
high spatiotemporal resolution. However, in their study, the authors did
not take into account other factors affecting data quality and hence the
identification process, namely scan duration and subject motion. Here we
evaluate the impact of not only spatiotemporal resolution during image
acquisition, but also other data quality factors on identification rates.

Methods

The HCP 900 subjects release (Van Essen et al., 2013) was used to
investigate scan time and motion. Data were pre-processed and connec-
tivity matrices were calculated as described elsewhere (Finn et al., 2015,
2017; Shen et al., 2017). All analyses were performed using the
left-to-right (LR) phase encoding rest runs from days one and two. Of
note, HCP TR =720 ms. To study motion, subjects were separated into
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low and high motion groups using a mean frame-frame displacement of the additional T1 recovery that would occur with a longer TR. Con-
threshold of 0.1 mm averaged over the two sessions. Of the 819 subjects nectivity matrices were subsequently calculated from the subsampled
available with all data and day one and two LR rest scans, 603 were in the data. In addition, we performed a follow-up analysis using a similar
low motion group and 216 subjects were in the high motion group. To strategy except that instead of removing every nth frame we averaged
study the effect of scan time, we truncated time courses to correspond to data from every n adjacent frames to again simulate a slower sampling
the number of frames in 1, 2, ...,14min and calculated connectivity frequency (Fig. 1B) and boost the SNR.
matrices from the shortened data. Because of the difference in sample To study the effect of spatiotemporal resolution (Fig. 1C), we utilized
sizes among the low and high motion groups, we repeatedly subsampled a publically available test-retest dataset from the Nathan Kline Institute
216 subjects in the low motion group and performed identification 1000 (NKL; http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html).
times. The mean ID rate and 95% confidence intervals were therefore This dataset contains individuals scanned with both multiband and non-
calculated from the subsampled data (Fig. 1A). To investigate when ID multiband acquisition sequences, thus allowing us to investigate the
rates plateaued, we used the Levenberg-Marquardt nonlinear least impact of different pulse sequences on ID rates. Data acquisition pa-
squares algorithm to fit the following nonlinear regression model func- rameters have been described previously (Liao et al., 2013). Briefly, three
tion: IDrate = maxIDrate(l — e*i), where t=time, [Drate=ID rate at resting-state fMRI sequences were obtained for each of the 24 subjects: 1)
time t, maxIDrate = maximum ID rate determined by the model, and multiband scan with TR = 645 ms; 2) multiband scan with TR = 1400 ms;
x = time required for the ID rate to reach approximately 63% of its ~ and 3) and a non-multiband echo planar imaging (EPI) scan with
maximum value. We defined plateauing of the ID rate to be the time TR = 2500 ms. One subject was excluded due to brain atrophy (subject
points when the rate was 95 and 99% of the maximum ID rate. 0021001); one subject was excluded due to excessive head motion
In a separate analysis (Fig. 1B), we subsampled data (after low-pass (3795193; greater than 3° rotation); and we were unable to locate session
filtering; approximate cutoff frequency of 0.12Hz) from each of the 2 data for subject 6471972, leaving 21 subjects in the final analysis. We
603 low motions subjects to simulate the effects of lower sampling fre- did not apply a further motion cutoff with these subjects due to the small
quencies (longer TR) versus total amount of scan time. For this analysis, sample size. The preprocessing steps have been previously described
we selected n frames from the duration of a subject's time course such (Noble et al., 2017), except we performed skull-stripping using optiBET
that sampling every other frame produced 600 frames of the original (Lutkenhoff et al., 2014). Though we did not perform slice-time correc-
1200; sampling every 3rd frame resulted in 400 frames remaining, etc. tion on the multi-band data, we performed analyses on the TR = 2500
Hence, these subsampled data still spanned the same overall acquisition subjects with and without slice-time correction.
time window. It should also be noted that this subsampled data has lower The identification procedure was carried out as described previously

signal to noise ratio (SNR) than real data acquired at a longer TR because using Matlab code released by Finn et al. (2015) and utilized by Waller
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Fig. 1. The effect of scan duration, motion, and differences in spatiotemporal resolution on identification rates. (A) Top: Separating the HCP 900 subjects into groups based on motion and
performing identification with increasing amounts of data. Identification rate for each group is indicated at each scan duration time. Note that the high and low motion groups have the
same scan durations at a given time point on the x-axis. Both groups have equal sample sizes (n = 216). Red and blue bars represent the low and high motion groups, respectively. (B) Top:
Simulating the effects of a lower TR in the HCP. Data from all 603 low motion subjects were subsampled (white bars); x-axis indicates the number of frames remaining. In a separate
analysis every n adjacent frames were averaged (grey bars); x-axis indicates in parentheses the number of adjacent frames used to average. (C) Top: Identification rates achieved using
multiband or non-multiband imaging parameters to assess the effect of spatiotemporal resolution. Multiband imaging was performed on groups labelled as TR 645 and TR 1400; TR 2500
was acquired via non-multiband imaging; TR 2500 (ST) indicates these subjects underwent slice-time correction. Identification rate achieved for each scanning protocol is indicated at each
scan duration time. Error bars correspond to 95% confidence intervals. Note that in (A), (B), and (C), the lower part of each panel includes the actual ID rate obtained and the 95%
confidence intervals.
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and colleagues (https://www.nitrc.org/frs/?group_id=51). To directly
compare our results to the main findings of Waller et al. we used the same
subset of nodes from the frontoparietal and medial frontal networks to
perform identification. To generate 95% confidence intervals, we
calculated bootstrapped identification accuracies by subsampling
approximately 70% of the subjects in each condition tested.

Results

Using only the edges derived from the frontoparietal and medial
frontal networks, we found identification was affected by both motion
and total scan time in the HCP 900 dataset. Given the differences in
sample sizes of the datasets used in this study and that of the authors (BLP
85), ID rates should not be directly compared to those obtained by Waller
et al. Rather our focus is on the relative importance of motion, scan time,
and acquisition sequence.

We observed that identification rates were consistently higher for
subjects in the low motion group compared to the high motion group
(P < .05; Fig. 1A) with the only exception being when 1 min of data was
used. Increasing scan duration, or the amount of data per subject,
resulted in increasing rates of identification for both groups. Using
nonlinear regression, we determined that ID rates reached 95% and 99%
percent of maximum at approximately 6.85 and 10.3 min, respectively,
for the low motion group, and at 8.7 and 14.4 min, respectively, for the
high motion group, supporting the notion that increasing scan durations
past 3.7 and 5.2 min (the scan times of 2/3 scans used in Waller et al.)
results in higher ID rates for both groups, and that for high motion
subjects, more data is needed to achieve a successful identification.

To further investigate the importance of total scan time, we sub-
sampled the HCP 900 data from the 603 low motion subjects, in one case
by taking every other volume, and in the other case by averaging adja-
cent frames, to simulate a lower TR. We found identification rates were
relatively stable after both procedures (Fig. 1B) and did not begin to
decrease until removing every 20th frame (60 frames remaining; P < .05)
and averaging over every 50 frames (P < .05).

We next used the NKI dataset to evaluate the effect of spatiotemporal
resolution on identification rates. Using the same framework as above,
we found that identification rates were effectively the same across im-
aging conditions at a given time point (P > .05; Fig. 1C). Similar to the
HCP results above, we observed that increasing the scan duration
increased identification rates in the NKI dataset. Interestingly, it was scan
duration, and not number of samples, that had the largest effect on
identification rates. In other words, a shorter TR cannot compensate for a
shorter acquisition time: in general, it is better to have fewer samples
distributed across a longer temporal window than more samples acquired
in quick succession (echoing results in Laumann et al., 2015; Airan et al.,
2016; Noble et al., 2017).

General comments

The study by Waller et al. (2017) provides a valuable contribution to
the goal of precision psychiatry by replicating the original connectome
fingerprinting work, and we applaud their efforts to expand the method
to other datasets and generalize the findings to larger groups of subjects.
However, the authors point out that accuracy and specificity are expected
to drop with lower quality datasets (in the authors’ words, datasets of
“standard quality,” as opposed to “high quality” datasets like the HCP).
While we agree that identification rates are expected to drop as sample
size increases, higher identification accuracies can still be obtained by
improving factors other than the particular EPI acquisition used. Here,
we have demonstrated that scan duration and subject movement both
affect identification rates, but were unable to find an effect of the
particular EPI acquisition strategy. Given the known effect of motion on
estimates of functional connectivity (Power et al., 2015; Satterthwaite
etal., 2012), it is reasonable that high motion subjects might be harder to
identify from scan to scan. Further, the findings with respect to EPI
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protocol (i.e. spatiotemporal resolution) are generally consistent with the
work of Airan et al. (2016), in which they applied a non-parametric
measure to study the differentiation of subjects in the NKI dataset and
observed no clear relationship regarding multiband versus
non-multiband data. Taking all of these factors into account, we suggest
that if Waller et al. (2017) had applied a similar motion threshold to the
BLP 85 dataset and if they had longer scan durations per subject, they
would have higher identification rates—even with their standard quality
fMRI data.

In a more general sense, our results reinforce the importance of the
amount of data collected per subject in detecting between-subject dif-
ferences. In the original connectome fingerprinting article it was shown
that identification rates increase with increasing data (Finn et al., 2015);
follow-up work similarly demonstrated identification is affected by time
(Finn et al., 2017). Other studies have also shown that longer acquisition
times and more data are associated with increases in the test-retest
reliability of functional connectivity measures (Birn et al., 2013; Muel-
ler et al., 2015; Shah et al., 2016; Noble et al., 2017; Laumann et al.,
2015) as well as estimates of individual differentiation (Airan et al.,
2016).

We note that the authors showed that the specificity of the ID method
could be low even when high accuracies are obtained. While the speci-
ficity findings are noteworthy and we appreciate their work, it is not clear
to what extent specificity in the context of identification-based studies is
necessary. Identifiability of the functional connectome by itself is inter-
esting, yet identification provides no information related to behavioral/
cognitive measures, disease course, etc. The goal is the development of
connectome-based predictive models that the unique patterns of con-
nectivity provide (Shen et al., 2017). Identification per se is not the
primary objective, and thus identifying a patient with high confidence
from scan to scan does not inform patient response to treatment or dis-
ease prognosis.

With this in mind, we reiterate an important aspect of our original
work: capitalizing on individual variability in functional connectomes
and using this to build meaningful models predicting some cognitive
feature as opposed to only identification of participants. Prediction of
individual features is a valuable objective for neuroimaging (Gabrieli
et al., 2015) and our previous work (Finn et al., 2015; Rosenberg et al.,
2017) supports the notion that it is possible to generate predictive models
of behavior from neuroimaging data. While we agree with Waller et al.
that further developments are needed to yield clinically available bio-
markers based on individual connectomes, there are several emerging
promising results suggesting the potential clinical utility (Drysdale et al.,
2017) of this approach. In this development, attention to the impact of
factors such as motion, scan duration, and acquisition parameters is a key
part of the process. We maintain that establishing the link between in-
dividual connectomes and behavior is an important goal for precision
psychiatry. We thank Waller et al. for extending the work of our identi-
fication method, and we look forward to further developments in using
individual connectome data in precision psychiatry.
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