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ABSTRACT
BACKGROUND: Autism spectrum disorder and attention-deficit/hyperactivity disorder (ADHD) are associated with
complex changes as revealed by functional magnetic resonance imaging. To date, neuroimaging-based models
are not able to characterize individuals with sufficient sensitivity and specificity. Further, although evidence shows
that ADHD traits occur in individuals with autism spectrum disorder, and autism spectrum disorder traits in
individuals with ADHD, the neurofunctional basis of the overlap is undefined.
METHODS: Using individuals from the Autism Brain Imaging Data Exchange and ADHD-200, we apply a data-driven,
subject-level approach, connectome-based predictive modeling, to resting-state functional magnetic resonance
imaging data to identify brain–behavior associations that are predictive of symptom severity. We examine cross-
diagnostic commonalities and differences.
RESULTS: Using leave-one-subject-out and split-half analyses, we define networks that predict Social
Responsiveness Scale, Autism Diagnostic Observation Schedule, and ADHD Rating Scale scores and confirm that
these networks generalize to novel subjects. Networks share minimal overlap of edges (,2%) but some common
regions of high hubness (Brodmann areas 10, 11, and 21, cerebellum, and thalamus). Further, predicted Social
Responsiveness Scale scores for individuals with ADHD are linked to ADHD symptoms, supporting the hypothesis
that brain organization relevant to autism spectrum disorder severity shares a component associated with
attention in ADHD. Predictive connections and high-hubness regions are found within a wide range of brain areas
and across conventional networks.
CONCLUSIONS: An individual’s functional connectivity profile contains information that supports dimensional,
nonbinary classification in autism spectrum disorder and ADHD. Furthermore, we can determine disorder-specific
and shared neurofunctional pathology using our method.

Keywords: ADHD, Autism spectrum disorder, Functional connectivity, Functional MRI, Magnetic resonance imaging,
Predictive modeling

https://doi.org/10.1016/j.biopsych.2019.02.019
The assessment of autism spectrum disorder (ASD) is chal-
lenging, in part because ASD includes a spectrum of symp-
toms, skills, and levels of impairment (1). As such, diagnosis,
severity estimates, and treatment choices often vary widely
across individuals. Reflecting this clinical complexity, the
associated neural correlates are also complex, have been
difficult to characterize, and are not well understood (2).
Similarly, attention-deficit/hyperactivity disorder (ADHD) is
characterized by multisystem structural and functional brain
abnormalities that present in varied ways within the population
(3). Together, ASD (prevalence w2%) and ADHD (w6%) are
the most common childhood neurodevelopmental disorders
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(4,5). Furthermore, across referred and nonreferred pop-
ulations, symptoms of ASD occur with greater frequency (20%)
in children with ADHD, and ADHD symptoms occur with
greater frequency (30%–50%) in children with ASD (6–8). Yet,
the underlying neurofunctional basis of the interplay between
disorders is undefined and understudied (9,10).

Despite the overlap in clinical presentation, ASD and ADHD
are defined as distinct disorders (11). As such, there are a limited
number of studies that investigate these disorders together
within the same work. Among those that do, there is a lack of
consensus (10,12–14). Furthermore, there are controversial find-
ings regarding genetic overlap between ASD and ADHD (15–17).
f Biological Psychiatry. This is an open access article under the
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Functional magnetic resonance imaging is a noninvasive
methodology that can measure a correlate of brain activity (18).
The dynamic time-series functional magnetic resonance im-
aging data can be analyzed to identify patterns of coupling
between distinct anatomical regions: a measure referred to as
functional connectivity (FC) (19). A map of all the connections
in the brain is referred to as the functional connectome (20).
Recent work has demonstrated that individuals have unique
FC patterns that contain information about behavioral traits or
clinical symptoms, or both, which may prove useful in guiding
individualized clinical management (12,21–25). Specifically,
Finn et al. (21) demonstrates that FC can be used to predict
fluid intelligence. Furthermore, others have demonstrated the
utility of this method in predicting openness, attention, and
intelligence (22–25).

FC studies of ASD show alterations in multiple functional
networks compared with those of typically developing (TD)
individuals (2,9,26–30). Similarly, altered FC has been docu-
mented in individuals with ADHD and transdiagnostically
(9,30–33). However, studies demonstrating a continuous rela-
tionship between behavioral measures (gold-standard clinical
evaluation) and FC are very limited, as the vast majority focus
on diagnosis (26,34). Furthermore, few studies predict out-
of-sample—rather than explain within-sample—clinical
scores, many are underpowered, and the results are rarely
replicated (3,26,34–36). As recent reviews summarize, findings
in this area are generally complex and nonconverging, likely
reflecting both the heterogeneity of these disorders and the
disparate but relevant brain circuits investigated (37–39).

Given the substantial individual differences in ASD and
ADHD symptomatology and the complex imaging correlates, a
whole-brain data-driven dimensional approach focused on
individual differences rather than categorical or binary
grouping may be more useful in capturing features across
multiple brain circuits. Here, we test the hypothesis that
connectome-based predictive modeling (CPM) can be used to
identify complex whole-brain networks that predict symptom
severity (21,25,40). Notably, CPM networks can be difficult to
interpret. Therefore, we implement two strategies to describe
our results in more familiar framework: overlap of edges with a
priori networks, and regions of high hubness (41,42).

We focus on two clinical scores relevant to ASD, the Social
Responsiveness Scale (SRS) and the Autism Diagnostic
Observation Schedule (ADOS), available from the Autism Brain
Imaging Data Exchange (ABIDE) as well as the ADHD Rating
Scale IV (ADHD-RS) available from the ADHD-200 (43–45).
Using both leave-one-subject-out (LOO) and split-half cross-
validation, we validate our models and define three functional
networks related to SRS, ADOS, and ADHD-RS scores. We
explore the generalizability of our models within and across
disorders (6–8,17,46–48).

METHODS AND MATERIALS

Data Sets

We analyzed data from ABIDE-I/II and the ADHD-200 con-
sortium, two publicly available multisite data sets of resting-
state functional magnetic resonance imaging, demographic,
and clinical assessment data (43–45). Details available for
ABIDE-I/II at fcon_1000.projects.nitrc.org/indi/abide/ and
2 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
ADHD-200 at fcon_1000.projects.nitrc.org/indi/adhd200/.
Refer to the Supplement for imaging parameters.

Data Processing

Standard preprocessing was applied (see the
Supplement) (23,49,50). For each individual, a 268 3 268
connectivity matrix was calculated using a functional atlas
defined on a separate population (21,41). Each entry in the
matrix represents the strength of the functional connection
between two nodes, also referred to as an “edge,” and the
matrix as a whole is the individual’s functional connectome.

Behavior Metrics

From ABIDE-I/II, we used SRS score, which serves as a broad-
spectrum estimate of autistic traits across ASD and TD in-
dividuals (51). We also used a more intensive scale, ADOS,
which is exclusive to ASD (52). From ADHD-200, we included
the ADHD-RS IV (53). Refer to the Supplement for details and
examples.

Model Building: Behavior Prediction

Models were built using LOO cross-validation CPM (21,23,40).
There are three steps: 1) feature selection (n2 1 training set), 2)
building of a predictive model (n2 1 training set), and 3) testing
the left-out subject. Each individual is left out once in an iter-
ative framework, which builds a network of predictive edges
and predicted scores for all individuals. Refer to Supplemental
Figure S2 for an illustrated description (54). Motion was not
regressed during this analysis, and diagnosis did not enter into
the model. No normalization of score (across module/version)
was necessary, as only one was used to build each model
(Supplemental Table S1). Finally, while partial correlation-
based FC measures have been validated, here there are
fewer observations (i.e., frames or time points) than nodes
(55–57). Therefore, to avoid the pitfalls of arbitrary parame-
terization, we chose not to do partial correlation. We applied
Bonferroni correction for multiple comparisons (six SRS, four
ADOS, and three ADHD-RS scores).

Internal Validation: Split-Half Cross-Validation,
Permutation Testing, and Extrapolation

To test model robustness, we used split-half validation
(n = 200 iterations) and permutation testing (n = 1000 itera-
tions). For split-half validation, individuals were divided equally
between train and test groups by random selection. Network or
model building was conducted within the training group as
described above, and the model was applied to the test group.
For permutation testing, subject labels and clinical scores were
randomly shuffled to break the true brain–behavior relation-
ship, and then prediction was performed on the shuffled data
to generate a null result (40). We tested whether correlations
from train and/or test and shuffled data come from different
distributions (Kruskal-Wallis; MATLAB; The MathWorks, Inc.,
Natick, MA). Within each split-half iteration, networks and
models were applied (extrapolated) to all individuals (less those
used to generate the model) whether or not clinical scores
were available from these individuals. Thus, for each individual,
we generated an average clinical score prediction that we
compared between diagnosis groups (anova1, MATLAB). We
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applied Bonferroni correction for multiple comparisons. To
avoid “double-dipping,” scores were never predicted for in-
dividuals who were within the network- or model-building
group.

Network Anatomy of Edges

The brain is complex, and the networks identified by CPM
reflect this complexity. To assess the extent to which our
models share common features, we computed the probability
that n shared edges exist between our networks and edges
within or between 10 atlas networks (41,42). Significance was
determined using the hypergeometric cumulative distribution
function (hygecdf, MATLAB, Bonferroni correction for 55
comparisons). We report the likelihood (1.0 – p value) that each
atlas network (and internetwork pair) contributed to our
networks.

Furthermore, we analyzed the distribution of edge lengths
within our networks (defined as the Euclidean distance be-
tween the center of mass between nodes). Using MATLAB, we
tested for outliers (kurtosis), normalcy (lillietest), a tendency
toward long or short connections (skewness), and differences
between positive/negative network distributions (ranksum). In
addition, we evaluated the anatomy of shared features be-
tween networks by taking the products of positive/positive,
positive/negative, negative/positive, and negative/negative
network pairs across scales and computed the likelihood that
each of the resulting sets of shared features contains n edges.

Node Hubness

Above, we described overlap using shared edges. Here, we
identify nodes within our networks with high hubness (i.e., with
a greater number of connections to other nodes). We calcu-
lated hubness by taking the node with the greatest number of
edges (connections to other nodes) within a network and
dividing the number of edges connecting to each node within
the given network by this maximum value. Thus, for each node
in a network, we obtained a number (0–1) that scales relative to
the greatest number of connections (or highest hubness).
Although this allows inferences to be made about the most
connected nodes within our networks, it should be empha-
sized that CPM is driven by edges, not nodes.

RESULTS

Results generated from ABIDE-I/II data precede results
generated from ADHD-200 data followed by the cross-
diagnosis comparison.

Participants

Exclusion criteria are described in the Supplement (58). To
account for site effects, we repeat our analysis in a leave-one-
site-out framework (Supplemental Figure S3). We observe no
change in our findings. However, it should be noted that this is
an imperfect method, and site effects could still be influencing
our observations. On the other hand, a study such as this is
impossible without the participation of multiple sites.

ASD Behavior Prediction (ABIDE-I/II)

For all SRS subscales, predicted behavior correlated with
known scores (r = .23–.37, p , .00002) (Figure 1A). Similar
B

results were obtained for ADOS scores (r = .43–.60, p , .0002)
(Figure 1B). In all cases, age, Full IQ Standard Score (FIQ) and
motion were included along with our model as covariates
(Supplemental Table S1). As a secondary analysis, we
considered only male individuals and obtained comparable
results (Supplemental Table S1C, D). Insufficient data were
available for a female group. These results affirm our
hypothesis that CPM can be used to predict the severity of
ASD symptoms. That is, the individual’s functional
connectome contains information reflecting social behavioral
scores as measured by SRS and ADOS.

Internal Validation of SRS and ADOS Models

To test the robustness of our models and generalizability within
ABIDE-I/II, we used split-half cross-validation and permutation
testing. Correlations between known and predicted behavior
for split-half train and test groups are plotted alongside corre-
lations obtained from shuffled data (null results) (Figure 2A). For
all SRS and ADOS subscales, correlations from train and test
data were greater than those from shuffled data. When SRS
and ADOS models were applied to all individuals (less those
used to generate the model), mean predicted scores (across
iterations) were greater for individuals with ASD relative to TD
individuals (N = 632) (Figure 2B), with the exception of the
ADOS Severity subscale. As a control, whole-brain connectivity
in place of SRS and ADOS networks showed no difference
between diagnostic groups (Supplemental Figures S5 and
S6C). Note that networks and models generated within this
section are not used in future sections. Networks from the
section ASD Behavior Prediction (ABIDE-I/II) (generated from all
individuals) are applied in all following analyses.

Anatomy of SRS/ADOS Networks

Unsurprisingly, given that subscale scores are highly corre-
lated (Supplemental Figure S1A), the anatomy of subscale
networks are similar (e.g., across SRS subscales, positive
edges are very likely to overlap with edges within the cere-
bellum). On the other hand, there are notable exceptions where
subscale network anatomy diverges (e.g., edges between
medial-frontal and motor networks were very likely to occur
within SRS total, communication, motivation, and mannerism
positive subscale networks, but unlikely to occur within SRS
cognition and awareness positive subscale networks)
(Figure 3, examples highlighted). Although it is difficult to
summarize the complex networks generated with CPM, here
feature sets that contribute most to SRS and ADOS networks
are described in a more familiar framework.

Composite SRS and ADOS Networks

As a data reduction strategy before investigating model
generalizability, and to identify edges that contribute across
subscales, “low” to “high” threshold, “composite” networks
are defined as follows: lowest, edges that appear in any sub-
scale network at least once; highest, edges that appear in all
subscale networks. Note that this is a threshold applied not at
the feature selection step but at the level of comparing net-
works for cross subscale relevance. The anatomy of com-
posite networks across thresholds is summarized in
Supplemental Figure S7. Despite similar anatomy at the
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 3
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Figure 1. Leave-one-subject-out cross-validation connectome-based predictive modeling (CPM) results for Social Responsiveness Scale (SRS) and Autism
Diagnostic Observation Schedule (ADOS) subscale scores. (A) Leave-one-subject-out cross-validation CPM results for SRS subscale scores. For each SRS
subscale (i–vi), the sums of the predicted SRS score from positive and negative models are plotted against known scores. (B) Leave-one-subject-out cross-
validation CPM results for ADOS subscale scores. For each subscale (i–iv), the sums of the predicted ADOS score from positive and negative models are
plotted against known scores. The linear regression is shown in black, and the 95% confidence interval is shown in gray. –ve, negative; 1ve, positive; ASD,
autism spectrum disorder; TD, typically developing.
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network level between subscale networks, at the edge level,
there was an order of magnitude difference in the number of
edges contained within composite networks at the lowest
versus highest threshold (Supplemental Figure S7).

The anatomy and distribution of edge lengths (see the
section Edge Lengths [ASD]) in composite networks were
similar across thresholds. The feature that distinguished edges
in the low-threshold networks from those in the high-threshold
networks was the magnitude of the slope in the linear model
relating edge strength to clinical score. Yet composite network
predictive power changed little with threshold, which is notable
considering the difference in the number of edges between
thresholds (Supplemental Figure S8C). For all between-scale
comparisons (see the sections Model Generalizability [ADOS
vs. SRS] and Model Generalizability [SRS and ADOS Models in
ADHD]), composite networks were formed with edges that
appeared in three or more subscale networks.

Edge Lengths (ASD)

Motivated by controversy in the literature regarding long- and
short-range hyper- and hypoconnectivity in ASD, we analyzed
4 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
the distribution of edge lengths in positive/negative subscale
and composite networks (Supplemental Figure S8A, B). None
of our networks contain outliers. For networks that were not
normally distributed, edges skewed toward longer lengths. For
subscale and composite SRS networks, there was no differ-
ence in median edge length between positive and negative
networks. On the other hand, although the difference was
small (w0.5 cm), negative edges were longer than positive
edges in most subscale and composite ADOS networks. In
summary, we find weak evidence of longer edges contributing
more to symptom severity in ASD.

Model Generalizability (ADOS vs. SRS)

Model generalizability was tested within ABIDE-I/II, and across
data sets and diagnoses (see the section Model Generaliz-
ability [SRS and ADOS Models in ADHD] and Figure 4). Within
ABIDE-I/II, SRS composite networks were applied to in-
dividuals from ABIDE-I/II for whom ADOS, but not SRS, scores
were available. Likewise, ADOS composite networks were
applied to individuals with SRS but without ADOS scores.
Predicted SRS scores correlated with known ADOS social
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Figure 2. Social Responsiveness Scale (SRS) and Autism Diagnostic Observation Schedule (ADOS) split-half cross-validation and permutation testing
results and application to all individuals from the Autism Brain Imaging Data Exchange I and II sets. (A) Correlation (r value) for split-half cross-validation. (i) For
each SRS subscale, the bar in the leftmost column is reproduced for reference from the leave-one-subject-out cross-validation connectome-based predictive
modeling (CPM) results reported in Figure 1. n = 352 for the total, mannerisms, communication, and motivation scores, n = 260 for the cognition and awareness
scores. The middle two columns are from split-half train and test cross-validation CPMs (n = 200 iterations). The final column shows the null results from
permutation testing where participants and scores are scrambled prior to leave-one-subject-out cross-validation (n = 1000). For all SRS subscales, train and
test results are greater than null results (p , 2 3 102144). (ii) For each ADOS subscale (p , .03), the bar in the leftmost column is reproduced for reference from
the leave-one-subject-out cross-validation CPM results reported in Figure 1. The middle two columns are from split-half train and test cross-validation CPMs
(n = 200 iterations). The final column shows the null results from permutation testing where participants and scores are scrambled prior to leave-one-subject-
out cross-validation (n = 1000). See Supplemental Figures S3A and S4A for results from SRS and ADOS positive and negative feature sets. (B) From each
iteration of the split-half cross-validation, the model was applied to all individuals from the Autism Brain Imaging Data Exchange I and II groups less those in the
training group (n = 632 training) to predict clinical scores. Across iterations (n = 200), mean predicted scores are compared between typically developing (TD)
individuals and individuals with autism spectrum disorder (ASD). (i) For all subscales, predicted SRS scores (p , 1 3 1027) are greater for individuals with ASD
than for TD individuals. (ii) Likewise, all but the severity ADOS subscale score was greater for individuals with ASD than for TD individuals (p , .02). Between
ASD and TD groups, motion (p . .14) and age (p . .96) were not different. –ve, negative; 1ve, positive; Aware., Awareness subscale score; Cog., Cognition
subscale score; Com., Communication subscale score; Gen. Total, Generic Total score; Man., Mannerism subscale; Mot., Motivation subscale score; Sev.,
Severity score; Soaff., Social Affect subscale score; Social Inter. or Social, Social Interaction subscale score.
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affect (r = .36, p , .01) and generic total (r = .29, p , .03)
scores. Likewise, predicted ADOS scores correlated with
known SRS mannerisms (r = .16, p , .01) and cognition scores
(r = .20, p , .002) (Figure 5A). Note that the predicted scores
here are not true SRS or ADOS scores, as they are generated
using composite networks.
B

Model Generalizability (SRS and ADOS Models in
ADHD)

Motivated by the idea that the underlying biology of mental
health disorders is not merely categorical, but rather trans-
diagnostic, we tested network specificity by applying our SRS
and ADOS models to children with ADHD and our ADHD model
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 5
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Figure 3. Anatomy of Social Responsiveness Scale (SRS) and Autism Diagnostic Observation Schedule (ADOS) subscale networks. For (A) SRS and (B)
ADOS, edge overlap (i, iii) within and (ii, iv) between 10 a priori atlas networks and our connectome-based predictive modeling networks are plotted for (i, ii)
positive and (iii, iv) negative feature sets. Each layered plot shows the cumulative (sum) likelihood (1.0 – p value) estimated from the probability of edges being
shared between a priori networks and each SRS and/or ADOS subscale network. Notice that in all plots, networks and internetwork pairs are ordered from
greatest to least cumulative likelihood (i.e., the x-axis is ordered differently in each plot). Overall, the subscale networks appear similar (e.g., highlighted in Ai).
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to children with ASD (32,47,59,60). To facilitate this comparison,
we first implemented the same procedures described above for
ABIDE-I/II data, to predict ADHD symptoms within the ADHD-
200 data set (Figure 4A). Correlations between known and pre-
dicted scores were found to be significant using split-half cross-
validation and permutation testing (Figure 4B). As above, we also
examined the anatomy of ADHD subscale (Figure 4C, D) and
composite (Supplemental Figure S9) networks.

Across neurodevelopmental disorders, predicted SRS
scores correlated with known ADHD scores (r = .31 or .32, p ,

.01) (Figure 5B). This result indicates that the SRS model con-
tains components related to attention that account for signifi-
cant variance in predicting ADHD symptoms. However, in each
cross-index model test (present and previous section), predic-
tive power was worse than that of the model constructed with
the score of interest (e.g., predicted inattention for individuals
with ADHD [Figure 4A], r = .40, is a stronger relationship than
predicted “SRS” score from applying the composite SRS
network to individuals with ADHD [Figure 5B], r = .32).

Shared Anatomy of Composite Networks Across
Scales at the Edge and Network Levels

To investigate whether predictions across scales were a by-
product of common anatomy, shared features were quantified
at the edge, network, and regional levels. The anatomy of
shared edges was estimated by taking the products of com-
posite network pairs and computing the likelihood (1.0 – p
value) that each of the resulting sets of shared features contains
n edges from atlas networks. These results are summarized in
2 3 2 matrices of layer plots for all thresholds (Figure 5C, D).
Shared network-level features were summarized and compared
with shared edge-level features (Supplemental Figure S10). For
each composite network, the contributing atlas networks and
atlas-network pairs are listed. Common atlas-network features
are indicated between composite networks, as are features
implicated at the edge level. The cerebellum contributes to SRS
and ADOS (positive), frontal-parietal to visual areas contribute
to SRS and ADOS (negative), subcortical and frontal-parietal to
visual-I contributes to SRS and ADHD (positive), and default
mode contributes to SRS and ADHD (negative). However, only
SRS and ADHD (negative) share edges that contribute signifi-
cantly to both networks.

Regions of High Hubness ASD and ADHD

Above, networks are described in terms of overlapping edges
contained within and between 10 a priori atlas networks. Here,
nodes with high hubness (i.e., with a greater number of con-
nections to other nodes) are identified to further characterize
ASD and ADHD networks. Supplemental Figures S11–S13
show surface maps of SRS, ADOS, and ADHD networks us-
ing hubness to illustrate nodes that play a greater role in the
brain–behavior relationships we observe. Nodes with high
hubness (.0.5) span a wide range of brain functions. At this
=

However, there are exceptions where the anatomy diverges (e.g., highlighted in A
subscale networks as circle plots as well as edges or nodes overlaid on glass b
Awareness subscale score; CBL, cerebellum; Cog., Cognition subscale score;
frontoparietal lobe; Gen. Total, Generic Total score; Limb, limbic system; Man.
Motivation subscale score; SC, subcortical areas; Soaff., Social Affect subscale

B

moderate threshold, several regions are shared between ASD
and ADHD (Supplemental Tables S2 and S3). However, as
described above, edges do not overlap between ASD and
ADHD networks. Thus, although many of the same regions are
implicated when we use hubness to describe our findings, this
is perhaps misleading because it is the connections between
regions that drive the brain–behavior relationships observed
here.

Replication Without Global Signal Regression

LOO CPM and split-half cross-validation on ADBIE-I/II and
ADHD-200 data without global signal regression was per-
formed (Supplemental Table S4 and Supplemental Figure S14).
Overall, our findings are unchanged, although stronger results
are obtained when global signal regression is applied.

DISCUSSION

Using open-source data and a novel prediction framework, we
find meaningful FC patterns that can independently predict
clinical measures of ASD and ADHD symptom severity (48).
Specifically, we build models that link brain and behavior, by
identifying patterns of activity associated with clinical scores as
well as crossover between scores (ADOS and SRS) and disor-
ders (ASD and ADHD). We find that SRS, ADOS, and the ADHD-
RS implicate different brain circuitry (share minimal edge over-
lap), yet there are components that are predictive of severity that
translate across scales and/or disorders. The power of CPM is
validated by predicting clinical scores of unseen individuals. Our
models provide insight into the complex brain organization
associated with ASD and ADHD, and the diffuse nature of the
identified circuits helps to explain the historical difficulty of
characterizing these disorders with more spatially limited ap-
proaches. The network metrics we identify map behavioral dif-
ferences onto brain circuitry. Thus, the present work does not
replace or replicate the utility of these tests but instead provides
a link between behavioral differences and brain FC differences.

Our results are consistent with a growing body of literature
suggesting that ASD and ADHD contain partially overlapping
but independent comorbidities (32,47,59,60). Notably, this
relationship is not a by-product of high edge overlap: ,2% of
edges are shared between any network pair. In line with
previous results, our predictive networks are complex and
widely distributed. Thus, they are not easily described.
Nevertheless, we summarize our findings using a priori
functional networks and high-hubness regions. We observe
networks that have been implicated in the ASD literature:
default mode, limbic, visuospatial, motor, subcortical, and
cerebellum regions, and ADHD literature: cerebellum,
subcortical to frontal-parietal, subcortical, default mode,
medial-frontal, medial-frontal to limbic, motor, and visual
areas (2,27–29,61,62). With our approach, we cannot
conclude that one or a few networks “cause” ASD and/or
ADHD symptoms. Rather, we observe a convergence of
ii). Inlays show the edges of example SRS and ADOS positive and negative
rains. *Likelihood greater than chance. –ve, negative; 1ve, positive; Aware.,
Com., Communication subscale score; DMN, default mode network; FP,
, Mannerism subscale; MF, mediofrontal cortex; MOT, motor areas; Mot.,
score; VAs, visual areas; VI, visual-I; VII, visual-II.
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Figure 4. Results from individuals with attention-deficit/hyperactivity disorder (ADHD) and typically developing (TD) individuals from the ADHD-200 data set.
As in Figure 1A and B, panel (A) gives leave-one-subject-out (LOO) cross-validation connectome-based predictive modeling (CPM) results for ADHD subscale
scores. For each subscale (i–iii) the sum of the predicted ADHD score from the positive and negative models are plotted against known score. (B) As in
Figure 2A, panel (i) gives the correlation (r value) of split-half cross-validation CPMs (n = 200) for each ADHD subscale and null results from shuffled data (n =
1000). As in Supplemental Figure S1A, panel (ii) gives the correlation matrix of ADHD behavior subscale scores. As with Social Responsiveness Scale and
Autism Diagnostic Observation Schedule, ADHD subscale scores are highly correlated. As in Supplemental Figure S7A panel (i) and B panel (i), panel (C) shows
layer plots of the cumulative number of edges vs. edge length for ADHD subscale networks. For all networks that are not normally distributed, edges are
skewed toward longer lengths. None of the networks are prone to outliers. There is a difference between positive and negative feature set edge lengths for all
subscale networks (p , 4 3 10-3). As in Figure 3, panel (D) shows ADHD edge overlap (i, iii) within and (ii, iv) between 10 a priori atlas networks and ADHD
networks are plotted for (i, ii) positive and (iii, iv) negative feature sets. Inlays show the edges of example subscale networks as circle plots as well as edges
and/or nodes overlaid on glass brains. *Likelihood greater than chance. ☨Network with edge lengths that are not normally distributed. CBL, cerebellum; DMN,
default mode network; FP, frontoparietal lobe; Limb, limbic system; MF, mediofrontal cortex; MOT, motor areas; SC, subcorical areas; VAs, visual areas; VI,
visual-I VI; VII, visual-II.
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functional connections that relate to a spectrum of behaviors.
We assert that this is indeed a strength of the CPM approach
that affords the ability to resolve more nuanced information by
requiring fewer statistical tests. Furthermore, our methodol-
ogy is designed to model the underlying biology of mental
health disorders as a continuous spectrum, not merely as a
8 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
categorical definition. Such models can also be trans-
diagnostic, as we have demonstrated (63).

Overall, few high-hubness regions are shared between
positive and negative ASD and ADHD networks. Within posi-
tive networks, both the thalamus and cerebellum have high
hubness, indicating shared alterations in movement and

http://www.sobp.org/journal


Figure 5. Generalizability of composite networks and overlap of composite network edges: Social Responsiveness Scale (SRS) and Autism Diagnostic
Observation Schedule (ADOS) (positive and negative) and SRS and attention-deficit/hyperactivity disorder (ADHD) (positive and negative). Plotted in panels
(A) and (B) are correlations of predicted vs. known behavior using composite networks applied across scales. We chose to threshold all composite networks
at edges appearing in three or more subscale networks. In panel (A), the (i) SRS and (ii) ADOS composite networks were used to predict scores for in-
dividuals from Autism Brain Imaging Data Exchange I and II data sets for whom only the other score was available (i.e., the SRS network was used to predict
scores for individuals for whom ADOS scores (not SRS scores) were available). Composite networks were also applied across the Autism Brain Imaging Data
Exchange I and II and ADHD-200 data sets. (B) Predicted SRS scores correlate with known ADHD scores in individuals from the ADHD-200 data set. Layer
plots showing the shared anatomy of (C) SRS and ADOS and (D) SRS and ADHD composite networks across thresholds. Composite network overlap of
positive and negative feature sets was computed by taking the products—ADHD positive/SRS positive (upper left panel), ADHD positive/SRS negative
(upper right panel), ADHD negative/SRS positive (lower left panel), and ADHD negative/SRS negative (lower right panel)—of paired networks and computing
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sensation. Similarly, within negative networks, Brodmann
areas (BAs) 10, BA 11, and BA 21 show high hubness, indi-
cating common connectivity changes associated with changes
in executive function and processing of language and/or se-
mantics. On the other hand, if we consider high hubness
collapsing across positive/negative networks and compare
ASD (SRS and ADOS) versus ADHD, we observe more wide-
spread patterns of connectivity alterations.

Specifically, transdiagnostically, we identify areas integral to
executive function (BA 9, BA 10, BA 11, and BA 46) and vision
(BA 7, BA 19, and primary and association vision areas). Like-
wise, we find representation/recognition (BA 31, BA 40, and
insula) and language and/or semantics (BA 21, BA 22, BA 44,
BA 47, primary auditory area, and cerebellum) areas that are
shared between disorders. However, for this latter pair, we find
additional areas within ASD networks (fusiform, BA 20, BA 39,
and BA 45) that could indicate more ASD-specific dysfunction.
Similarly, areas important for sensation (BA 40 and thalamus)
and movement (BA 6, BA 7, BA 8, cerebellum, and thalamus)
are found in ASD and ADHD. In ADHD, we identify additional
areas (primary/association sensory areas, and primary motor
areas). Finally, areas important for emotion (BA 24, BA 31, and
BA 38, the hippocampus and insula), processing (BA 19, BA 21,
BA 32, BA 47, and visual association areas), and memory (BA
38, parahippocampus, and hippocampus) are identified in both
networks. Furthermore, across the same three dimensions, we
identify additional areas unique to ASD—emotion (amygdala),
processing (BA 39 and caudate), and memory (caudate)—and
areas unique to ADHD—emotion (BA 23 and BA 25), process-
ing (BA 25 and sensory association areas), and memory (BA
30). In summary, we find that ASD and ADHD share areas that
are integral to a broad range of brain functions. This is not
surprising given the heterogeneity and complexity of these
disorders as well as the overall complexity of the human brain.
Furthermore, our findings echo and extend previous work
(9,10,12–14); see the Supplement.

Our results should be viewed in light of a few limitations, one
of which is our strict inclusion criteria. On one hand, we include
individuals on medication and individuals of both sexes in an
attempt to reflect the true patient population and because we
determined that clinical scores are independent of medication
status and sex. Conversely, because age, FIQ, and motion are
significantly correlated with clinical scores, we chose to limit
these attributes to uncover connectivity features that relate only
to clinical measures. Furthermore, to ensure that the features we
identify are indeed specific to our metrics of interest, we built a
model to predict FIQ, using the same data. We find that the
underlying predictive features of the FIQ model are nonover-
lapping with the features that are predictive of SRS and ADOS
scores. Importantly, this indicates that the features within the
SRS and ADOS models are specific to these measures.

Another consideration is the inherent heterogeneity of pub-
licly available data, which likely made prediction more chal-
lenging. That we find CPM works despite this challenge should
be considered a strength that may have improved
=

the likelihood that each atlas network contributes the observed number of ed
negative; 1ve, positive; ASD, autism spectrum disorder; CBL, cerebellum; D
Total score; Limb, limbic system; MF, mediofrontal cortex; MOT, motor areas; SC
visual-II.
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generalizability (64). Our models capture w10% to 45% of the
variance, which is in part due to the aforementioned hetero-
geneity. However, as we are building predictive (not explana-
tory) models and pooling from a large representative
population, we expected modest effect sizes that are more
generalizable (35,65). Finally, it should be noted that the
correlative relationships between the functional connectome
and clinical scores revealed by CPM cannot be used to infer
causality.

Future studies could be improved by implementing longer
imaging times and harmonized scanners and protocols, to
provide more reliable FC measurements (42,66). It has also
been suggested that data obtained while participants perform
a task aimed at enhancing differences in connectivity can lead
to better predictive models (67,68). Furthermore, the use of
naturalistic conditions such as movie-watching can reduce
motion, enhance individual differences, and improve an in-
dividual’s tolerance of longer scan durations (69,70).

In conclusion, the present work uses a data-driven approach
to develop objective quantitative models that establish a link
between FC and behavior in ASD and ADHD. We observe
widespread differences in functional organization, congruent
with the complex behavioral and cognitive abnormalities that
are a hallmark of these disorders. We also demonstrate the
generalizability and transdiagnostic utility of this approach. In
the future, understanding the changes in functional organiza-
tion of the brain that relate to various dimensional aspects of
behavior may provide the needed inferential leverage at the
individual level to inform more comprehensive treatment stra-
tegies for individual patients and their families.
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