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A B S T R A C T

Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies.
While multisite studies provide an efficient way to accelerate data collection and increase sample sizes,
especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and
weaken results. Little data exists on the stability of functional connectivity measurements across sites and
sessions. In this study, we assess the influence of site and session on resting state functional connectivity
measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as
part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of
connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex
(RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise
connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach to assessing con-
nectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were
quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability
Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate
connectivity analyses; instead, subject effects dominated relative to the other measured factors. However,
summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all
connectivity measures, although subject variance was three times the site variance, the residual represented 60–
80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the
measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across
connectivity measures was poor (ICC=0.07–0.17), but increased with increasing scan duration (ICC=0.21–
0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such
as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional
connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations
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is necessary to increase the reliability of connectivity estimates at the single-subject level.

1. Introduction

Connectivity analyses of functional magnetic resonance imaging
(fMRI) data are increasingly used to characterize brain organization in
healthy individuals (Allen et al., 2011; Power et al., 2010; Smith et al.,
2013; Tomasi and Volkow, 2012) and in clinical populations
(Constable et al., 2013; Hoffman and McGlashan, 2001; Karlsgodt
et al., 2008; Lynall et al., 2010; Scheinost et al., 2014a). fMRI studies
aimed at capturing rare events, such as conversion to a disorder from a
prodromal or at risk state, require particularly large samples that can
be difficult to obtain at a single site. An efficient way to amass large
numbers of subjects is to conduct a multisite study. Although power
may be increased in multisite studies due to the acquisition of more
subjects, these benefits may not be realized if site-related effects
confound the measurements (Van Horn and Toga, 2009). In an ideal
multisite study, the parameter of interest should be generalizable
across sites, the effect of which should be negligible relative to the
variability between subjects. Prior to pooling data from multisite
studies, the assessment of site-related effects and reliability of data
across sites should be evaluated. In general, ensuring the reliability of
biomedical research has become a major topic, highlighted by recent
efforts by the NIH (Collins and Tabak, 2014).

Reliability of functional connectivity and its network topology have
been previously investigated at a single site (Mueller et al., 2015; Shah
et al., 2016; Shehzad et al., 2009; Zuo et al., 2010) or using a site-
independent paradigm (Braun et al., 2012; Wang et al., 2011). Others
have investigated reliability of MRI across multiple sites in the domains
of resting-state brain network overlap (Jann et al., 2015), anatomical
measurements (Cannon et al., 2014; Chen et al., 2014), and task-
related activations (Brown et al., 2011; Forsyth et al., 2014; Friedman
et al., 2008; Gee et al., 2015). In general, test-retest reliability of
functional connectivity is an ongoing field of study within both healthy
and clinical populations (Keator et al., 2008; Orban et al., 2015; Van
Essen et al., 2013; Zuo et al., 2014). However, with the exception of
independent component analysis-based measurements (Jann et al.,
2015), the reliability of resting state functional connectivity across
multiple sites has not yet been investigated and may differ from
multisite task-based fMRI findings.

Here we assessed the reliability of functional connectivity measures
in the resting state BOLD signal. The North American Prodrome
Longitudinal Study (NAPLS) provides a unique opportunity to assess
the reliability of functional connectivity. The NAPLS2 study, conducted
by a consortium of eight research centers, performed a longitudinal
evaluation of individuals at clinical high risk (CHR) for psychosis in
order to characterize the predictors and mechanisms of psychosis onset
(Addington et al., 2007). To assess site effects across the eight centers,
a separate traveling-subject dataset was acquired. The traveling-subject
design is a common reliability paradigm wherein multiple subjects
travel to multiple sites in a fully crossed manner (Pearlson, 2009). In
this study, eight healthy subjects traveled to all eight sites in the
consortium and were scanned at each site on two consecutive days,
producing a total of 128 scan sessions. The relative contributions of
each factor (subject, site, day) and their interactions can be used to
determine reliability (Webb and Shavelson, 2005).

Specifically, we investigate the effect of performing measurements
across sites using three complementary approaches to measuring
functional connectivity: 1) seed-to-whole-brain connectivity using two
seeds known to be hubs of robustly detected networks—the posterior
cingulate cortex (PCC) and the right motor cortex (RMC)—and one
seed chosen for more exploratory reasons—the left thalamus (LT); 2)
voxel-wise connectivity using the intrinsic connectivity distribution

(ICD), a threshold-free measure of voxel-wise connectivity (Scheinost
et al., 2012), and 3) matrix connectivity, i.e., whole-brain connectivity
within a functional parcellation atlas. We report subject, site, scanner
manufacturer, and day-of-scan effects on functional connectivity,
investigate the influence of site and day on reliability using the
Generalizability Theory framework (Webb and Shavelson, 2005), and
assess for site outliers using a leave-one-site-out analysis of variance.
These results will help guide not only subsequent research using the
NAPLS data set, but also other multisite studies of functional con-
nectivity.

2. Methods

2.1. Subjects

Eight healthy subjects (4 males, 4 females) between the ages of 20
and 31 (mean=26.9, S.D.=4.3) with no prior history of psychiatric
illness, cognitive deficits, or MRI contraindications were recruited for
this study. Subjects were excluded if they met criteria for psychiatric
disorders (via the Structured Clinical Interview for DSM-IV-TR; (First,
2005)), substance dependence (6 months), prodromal syndromes (via
the Structured Interview for Prodromal Syndromes; (McGlashan et al.,
2001)), neurological disorders, sub-standard IQ (Full Scale IQ < 70,
via the Wechsler Abbreviated Scale of Intelligence; (Wechsler, 1999)),
and relation to a first-degree relative with a current or past psychotic
disorder. One subject was recruited from each of the eight sites in the
NAPLS consortium: Emory University, Harvard University, University
of Calgary, University of California Los Angeles (UCLA), University of
California San Diego (UCSD), University of North Carolina (UNC), Yale
University, and Zucker Hillside Hospital. Only participants above 18
years of age were recruited due to travel restrictions. Subjects provided
informed consent and were compensated for their participation. Each
subject was scanned at each of eight sites on two consecutive days,
resulting in 16 scans per subject and 128 scans in total (8 subjects×8
sites×2 days). The order in which subjects visited each site was
counterbalanced across subjects. Each subject completed all eight site
visits within a period of 2 months, and all scans were conducted
between May 4 and August 9, 2011, during which time no changes were
made to the MRI scanners.

2.2. Data acquisition

As in Forsyth et al. (2014), data were acquired on Siemens Trio 3T
scanners at UCLA, Emory, Harvard, UNC, and Yale, on GE 3T HDx
scanners at Zucker Hillside Hospital and UCSD and on a GE 3T
Discovery scanner at Calgary (SI Table 1). Siemens sites employed a
12-channel head coil, while GE sites employed an 8-channel head coil.
For T1 anatomical scans, slices were acquired in the sagittal plane at
1.2 mm thickness and 1 mm×1 mm in-plane resolution. Functional
imaging was performed using blood oxygenation level dependent
(BOLD) EPI sequences with TR/TE 2000/30 ms, 77 degree flip angle,
64 mm base resolution, 30 4-mm slices with 1-mm gap, and 220-mm
FOV. A single 5-min run of functional data consisted of 154 continuous
EPI functional volumes. In accordance with the Function Biomedical
Informatics Research Network (FBIRN) multi-center EPI sequence
standardization recommendations (Glover et al., 2012), all scanners
ran these BOLD fMRI EPI sequences with RF slice excitation pulses to
excite both water and fat, fat suppression pulses were administered
prior to RF excitation, and, comparable reconstruction image smooth-
ing was implemented between scanner types (i.e., no smoothing during
reconstruction). Subjects were instructed to relax and lay still in the
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scanner with their eyes open while gazing at a fixation cross and not to
fall asleep. In addition, T2-weighted images were acquired in the same
plane as the BOLD EPI sequences (TR/TE 6310/67ms, 30 4-mm slices
with 1-mm gap, and 220-mm FOV).

2.3. Image analysis

2.3.1. Preprocessing
Functional images were slice time-corrected via sinc interpolation

(interleaved for Siemens, sequential for GE), then motion-corrected
using SPM5 (http://www.fil.ion.ucl.ac. uk/spm/software/spm5/).
Further analysis was performed using BioImage Suite (Joshi et al.,
2011; http://bioimagesuite.yale.edu/). The data was then spatially
smoothed with a 6 mm Gaussian kernel. Next, subject space gray
matter was identified using a common-space template as follows
(Holmes et al., 1998). A white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF) mask was defined on the MNI brain. To
account for the lower resolution of the fMRI data, the WM and CSF
areas were eroded in order to minimize inclusion of GM in the mask,
and the GM areas were dilated. Voxels originally labeled WM or CSF
that are removed during eroding are not re-labeled as GM, but left
unlabeled. Voxels in the combined WM/GM/CSF mask that are not
labeled are ignored. This template was then warped to subject space
using the transformations described in the next section in order to
include only voxels in the gray matter for subsequent analyses. Finally,
the data were temporally smoothed with a zero-mean unit-variance
Gaussian filter (cutoff frequency=0.09 Hz). During the connectivity
analyses described later, several noise covariates were regressed from
the data, including linear and quadratic drift, a 24-parameter model of
motion (Satterthwaite et al., 2013), mean cerebral-spinal fluid (CSF)
signal, mean white matter signal, and mean global signal.

2.3.2. Common space registration
Single subject images were warped into MNI space using a series of

linear (6 DOF, rigid) and non-linear transformations estimated using
BioImage Suite. First, anatomical data were skull-stripped using FSL
(Smith, 2002; www.fmrib.ox.ac.uk/fsl) and the functional data for each
subject, site, and day were linearly registered to the corresponding T1
anatomical images. Next, an average anatomical image for each subject
was created by linearly registering and averaging all 16 anatomical
images (from 8 sites×2 sessions per site) for each subject. These
average anatomical images were used for non-linear registration. Using
these average anatomical images and single non-linear registration for
each subject ensures that any potential anatomical distortion caused by
the different sites or scanner manufacturers does not introduce a
systemic basis into the registration procedure.

Finally, the average anatomical images were non-linearly registered
to an evolving group average template in MNI space as described
previously (Scheinost et al., 2015). The registration algorithm alter-
nates between estimating a local transformation to align individual
brains to a group average template and creating a new group average
template based on the previous transformations. The local transforma-
tion was modeled using a free-form deformation parameterized by
cubic B-splines (Papademetris et al., 2004; Rueckert et al., 1999). This
transformation deforms an object by manipulating an underlying mesh
of control points. The deformation for voxels between control points
was interpolated using B-splines to form a continuous deformation
field. Positions of control points were optimized using conjugate
gradient descent to maximize the normalized mutual information
between the template and individual brains. After each iteration, the
quality of the local transformation was improved by increasing the
number of control points and decreasing the spacing between control
points, which allows for a more precise alignment. A total of 5
iterations were performed with control point spacings that decreased
with each subsequent iteration (15 mm, 10 mm, 5 mm, 2.5 mm, and
1.25 mm). The control point spacings correspond directly with the

spatial resolution of the underlying mesh. To help avoid local minima
during optimization, a multi-resolution approach was used with three
resolution levels at each iteration.

All transformation pairs were calculated independently and com-
bined into a single transform that warps the single participant results
into common space. Each subject image can thereby be transformed
into common space via a single transformation, which reduces inter-
polation error.

2.3.3. Connectivity analyses
Three functional connectivity measures were explored: connectivity

from each of three seeds (PCC, RMC, LT) to each voxel in the whole
brain (seed-based connectivity), voxel-based connectivity obtained via
the intrinsic connectivity distribution (ICD), and connectivity across all
brain regions (matrix connectivity).

2.3.3.1. Seed-based connectivity. Three seed regions were chosen for
seed-to-whole-brain connectivity analysis. The posterior cingulate
cortex (PCC) was chosen because it is the main hub of the default
mode network (DMN), the network that can be most robustly detected
in the brain (Buckner et al., 2008; Greicius et al., 2003). Anomalous
default mode network connectivity has also been implicated in many
neuropsychiatric disorders (Broyd et al., 2009). The right motor cortex
(RMC) was chosen because it is a main hub of another robust network,
the motor network (Biswal et al., 1995). The left thalamus (LT) was
chosen because of recent interest in thalamo-cortical connectivity (e.g.,
(Masterton et al., 2012). Seeds were manually defined as cubes within
the group average anatomical brain (see Common Space Registration)
registered to the MNI brain. The following Brodmann areas were used:
PCC (MNI x=−1, y=−49, z=−24; 11 mm3), RMC (MNI x=38, y=−18,
z=45; 9 mm3), LT (MNI x=−6, y=−14, z=7; 9 mm3). The mean
timecourse within the seed region was then calculated, the Pearson's
correlation between the mean timecourse of the seed and the
timecourse of each voxel was assessed, and the final correlation
values were converted to z-scores using a Fisher transformation.

2.3.3.2. Voxel-wise ICD. Functional connectivity of each voxel as
measured by ICD was calculated for each individual subject as
described previously (Scheinost et al., 2012). Similar to most voxel-
based functional connectivity measures, ICD involves calculating the
Pearson's correlation between the timecourse for any voxel and the
timecourse of every other voxel in the gray matter, and then calculating
a summary statistic based on the network theory measure degree. This
process is repeated for all gray matter voxels, resulting in a whole-brain
parametric image with the intensity of each voxel summarizing the
connectivity of that voxel to the rest of the brain.

To avoid threshold effects, ICD models the distribution of a voxel's
degree across correlation thresholds—that is, ICD models the function
d(x,τ), where x is a voxel, τ is a correlation threshold, and d is the
resultant degree of that voxel at that threshold. The distribution is
modeled using a Weibull distribution. This parameterization is akin to
using a stretched exponential with unknown variance to model the
change in degree as a function of the threshold used to define degree. A
parameter describing the variance of this model (the parameter α in
Scheinost et al. (2012)) is used for the analyses of reliability presented
here. Because variance controls the spread of the distribution of
connections, a larger variance signifies a greater number of high
correlation connections. Altogether, this formulation avoids the need
for choosing an arbitrary connectivity threshold to characterize the
connectivity of each voxel.

In addition to ICD, we investigated reliability for two other voxel-
based connectivity measures: global brain connectivity (GBC) (Cole
et al., 2010) and voxel-wise degree (Buckner et al., 2009). GBC
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measures the mean correlation between all voxels and degree measures
the number of voxels with which a particular voxel is correlated above
an arbitrary but typical threshold (r > 0.25).

2.3.3.3. Matrix connectivity. For the matrix connectivity analysis,
regions were delineated according to a 278-node gray matter atlas
developed to cluster maximally similar voxels (Shen et al., 2013). As
previously described (Finn et al., 2015), the mean timecourse within
each region was calculated, and the Pearson's correlation between the
mean timecourse of each pair of regions provided the edge values for
the 278×278 symmetric matrix of connection strengths, or edges.
These correlations were converted to z-scores using a Fisher
transformation to yield a connectivity edge matrix for each subject
and session.

2.4. Modeling regressors of connectivity

A two-part approach was used to investigate effects due to each
factor (subject, site/scanner manufacturer, and day): (1) assess for the
effect of each factor (via ANOVA), and (2) assess for the effect of each
individual level within each factor (via GLM). In the first part, effects
due to each factor were assessed as follows. The contribution of all
factors to the variability in connectivity was estimated using a three-
way ANOVA with all factors modeled as random effects, which
maximizes generalizability of these results beyond the conditions
represented in this analysis. The Matlab N-way ANOVA function
anovan was used, which obtains estimates using ordinary least
squares. The model is as follows, with subscripts representing p=par-
ticipant, s=site, d=day, and e=residual:

σ X σ σ σ σ( ) = + + + .psd p s d e
2 2 2 2 2

The same model was reused to assess for scanner manufacturer
effects by replacing site with scanner manufacturer (m=scanner
manufacturer):

σ X σ σ σ σ( ) = + + + .psd p m d e
2 2 2 2 2

Note that no other factors were explored with the second model.
Next, the F-test statistic was used to assess whether each factor was
associated with significant variability in connectivity. A significant F-
statistic reflects high between-factor variability relative to within-factor
variability.

Finally, correction via estimation of the false discovery rate (FDR)
was performed separately for each factor using mafdr in Matlab (based
on Storey (2002)). For example, a single q-value map was obtained for
the “subject factor,” and another for the “site” factor. Corrected values
were then compared to a q-value threshold of 0.05. The proportion of
affected edges or voxels relative to the total number of edges or voxels
are presented throughout the text and in Table 1.

In the second part, a general linear model (GLM) was used to
investigate whether individual subjects, sites, days, or scanner manu-
facturers showed particular edge effects. Each of the four factors
(subject, site, day, and scanner manufacturer) were modeled sepa-
rately, so that four GLMs—one per factor—were constructed for each
edge or voxel and fit using the Matlab function glmfit. Consistent with
the exploratory aim of the current study, we estimated each GLM
independently to facilitate interpretation of the direct effects (Hayes,
2013). An effect-coded GLM design was employed in order to derive
easily comprehensible parameter estimates (Rutherford, 2011).
Whereas a dummy-coded GLM design is typically used to provide
estimates of whether a level significantly differs from a reference level,
an effect-coded GLM design is used to provide estimates of whether a
level significantly differs from the grand mean. For example, one
regressor of interest might be Subject 1, and one corresponding
outcome variable might be the strength of a particular edge; if this

regressor is found to be significant, then mean strength of this edge
measured for Subject 1 significantly differs from the mean strength of
this edge measured across all subjects. Design matrices for this study
can be found in SI Fig. 1. In this analysis, site, scanner manufacturer,
and day effects are undesirable, whereas subject effects are expected to
greatly exceed the other measured factors because brain connectivity
has been shown to differ greatly across subjects (Finn et al., 2015). This
approach determines whether any of the measures are significantly
different from the group mean as a function of these factors. It is
important to consider that the inclusion of the level of interest in the
grand mean can somewhat undermine the power of this test; however,
this provides a useful basis for making comparisons between all levels
of a factor because all tests for all levels within a factor are performed
using a common reference.

Using the same procedure described above, FDR-correction was
performed separately for each level of each factor. For example, for the
“subject” factor, eight p-values maps were obtained (one for each
subject), which were then individually corrected to obtain eight q-value
maps. The mean proportion of affected edges or voxels relative to the
total number of edges or voxels are presented throughout the text and
in Table 2 alongside their standard deviations. Summary maps are
shown throughout the main text, and detailed individual maps can be
found in the Supplemental materials (SI Figs. 1–3).

2.5. Assessing reliability

Reliability was assessed in accordance with the Generalizability
Theory (G-Theory) framework. G-Theory is a generalization of Classical
Test Theory that explicitly permits the modeling of multiple facets of
measurement which may introduce error (i.e., site, day) related to the
object of measurement (i.e., subject) (Cronbach et al., 1972; Shavelson
et al., 1989; cf. Webb and Shavelson, 2005); previous studies have used
G-Theory to assess the reliability of task-based functional neuroima-
ging (Forsyth el al., 2014, Gee et al., 2015). In the first step in this
process, the Generalizability Study (G-Study), variance components are
estimated for the object of measurement (i.e., subject), all facets of
measurement (i.e., site and day), and their interactions. The residual
variance (σpsd e,

2 ) is expected to represent a combination of the three-way
interaction and residual error. Variance components were estimated
using the same procedure as above (three-way ANOVA, all factors
modeled as random effects) but now with the inclusion of all interac-
tions. The model is as follows, with subscripts representing p=partici-
pant, s=site, d=day, and e=residual:

σ X σ σ σ σ σ σ σ( ) = + + + + + + .psd p s d ps pd sd psd e
2 2 2 2 2 2 2

,
2

Variance components estimated to be negative were very small in
relative magnitude and therefore set to 0, in accordance with Cronbach
et al. (1972) via Shavelson et al. (1993).

Two types of reliability were then assessed: relative reliability and
absolute reliability. Relative reliability is measured by the general-

Table 1
Percentage of edges or voxels showing significant effects for each connectivity measure
due to each factor. Significant effects were obtained for each factor via ANOVA (p < 0.05,
FDR-corrected).

Subject Site Scanner manufacturer Day

PCC
n=42784

97.0% 0.4% 2.2% 0%

RMC
n=42784

67.3% 0.0% 0.4% 0%

LT
n=42784

70.8% 0% 0.1% 0%

ICD
n=42733

100% 43.5% 18.7% 0%

Matrix
n=38503

100% 4.2% 3.5% 0%
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izability coefficient (G-coefficient, Eρ
2) and reflects the reliability of

rank-ordered measurements. Absolute reliability is measured by the
dependability coefficient (D-coefficient, Φ) and reflects the absolute
agreement of measurements. Note that both are related to the
intraclass correlation coefficient (ICC) (Shrout and Fleiss, 1979), and
are based on ratios of between- and within-factor variability, like the F-
statistic. G-coefficients (Eρ

2) and D-coefficients (Φ) were calculated in
Matlab as follows:

E
σ

σ
=

+ + +
ρ

p

p
σ
n

σ
n

σ
n n

2
2

2
′ ′ ′ ∙ ′

ps
s

pd

d

psd e
s d

2 2 ,2

Φ
σ

σ
=

+ + + + + +
p

p
σ
n

σ
n

σ
n

σ
n

σ
n n

σ
n n

2

2
′ ′ ′ ′ ′ ∙ ′ ′ ∙ ′
s
s

d
d

ps
s

pd

d
sd

s d

psd e
s d

2 2 2 2 2 ,2

such that σi…
2 represents variance components associated with factor i

(p=participant, s=site, and d=day) or an interaction between factors
and n ′i represents number of levels in factor i.

Next, a Decision Study (D-Study) was performed, which is often
done to determine the optimal combination of measurements from
each facet of measurement that yields the desired level of reliability. G-
and D-coefficients were re-calculated with n ′i allowed to vary as free
parameters. For example, a reliability coefficient from a single 5-min
run is calculated from n ′ = 1s and n′=1d , whereas a reliability coefficient
from data averaged over 25 min (5 min×5 days) is calculated from
n ′ = 1s and n ′ = 5d . The D-Study results are presented for n′=1s and n ′d
allowed to vary because few studies would undertake a design whereby
data is averaged over multiple sites, although some may consider
averaging over multiple days. In addition, the “day” axis of the Decision
Study may somewhat approximate a variable with more practical
relevance: “run.” Mean ICCs over all edges or voxels are presented
throughout the text and in Table 3 alongside their standard deviations.
Note that the ICC measures the reliability of measurements at the
single-subject level, which is distinct from the group-level analyses
typically conducted in fMRI. Group analyses may derive additional
power from averaging over multiple subjects.

The formulations of the G- and D-coefficients can be compared to
highlight key similarities and differences. Both of these reflect the ratio
of variance attributed to the object of measurement relative to itself
plus some error variance due to facets of measurement. However, for
relative reliability, the error term includes the error strictly associated
with the object of interest, whereas for absolute reliability, the error
term includes the error associated with all possible sources. Because of
these differences in the denominator, relative reliability is low when
the rankings of persons based on their relative measurements are
inconsistent, whereas absolute reliability is low when measurements of
persons are inconsistent. Both coefficients range from 0 to 1, and can

be interpreted as follows: < 0.4 poor; 0.4–0.59 fair; 0.60–0.74 good; >
0.74 excellent (Cicchetti and Sparrow, 1981).

Note that while both relative (Eρ
2) and absolute (Φ) reliability

provide useful perspectives, relative reliability may be more applicable
to the interpretation of fMRI data. fMRI data are typically understood
in terms of relationships between individuals or groups (e.g., signifi-
cance of “activation” differences between a clinical and control group)
rather than absolute terms (e.g., “activation map” of a clinical group).
Therefore, in this example, it is useful to understand whether the
measured differences between groups remain stable. While high
relative reliability suggests that measurements of different individuals
will be similarly different over multiple scans, high absolute reliability
suggests that the measurement of a single individual is similar to him
or herself over multiple scans.

Previous work has shown that the reliability of significantly non-
zero edges is significantly greater than the reliability of edges which are
not significantly non-zero (Birn et al., 2013; Shehzad et al., 2009) and
that there is a significant relationship between reliability and edge
strength (Wang et al., 2011). Therefore, to be consistent with previous
literature, the results presented here also include reliability and
dependability within edges or voxels exhibiting significantly non-zero
connectivity across all 128 scans (Bonferroni-corrected for total
number of edges or voxels) (cf. Shehzad et al., 2009). For example,
for PCC seed connectivity, a two-tailed t-test was separately performed
for each of the 42,784 individual edges to assess whether the
measurement of that edge across all 128 scans was significantly
different than zero (Bonferroni-corrected for 42,784 total edges).
Therefore, 42,784 p-values were obtained, and edges that were not
significantly different than zero (p < 0.05) across all scans were
excluded. In the context of seed and matrix connectivity, this procedure
selects for edges with strong correlations; in the context of ICD, this
selects for voxels with connectivity profiles that are significantly
different than the global average ICD value.

If an edge or voxel was missing from at least one scan, that edge or
voxel was excluded from all analyses. For example, if voxel X was
missing in one scan from one subject (1/128 total scans), then voxel X
was removed from all scans. This occasionally occurred as a result of
registration, which caused some parts of the individual subject brains
to lose voxels at the boundary between gray matter and non-gray
matter.

Reliability calculated both over all data and over only significant
edges can be found in SI Table 2 with corresponding variance
components in SI Tables 2 and 3, respectively. Violin plots from all
data and significant edges only were created using the R function
geom_flat_violin, modified here for asymmetric violin plots; these are

Table 2
Mean percentage of edges or voxels showing significant effects for each connectivity
measure due to each level, alongside standard deviations. Calculated for each individual
site, subject, and scanner manufacturer regressor (p < 0.05, FDR-corrected). Contrasts
were made between individual regressors (e.g., subject 1) and the grand mean of that
group of regressors (e.g., all subjects).

Subject Site Scanner manufacturer Day

PCC
n=42784

25.9 ± 4.4% 0.0 ± 0.0% 0.4% 0%

RMC
n=42784

7.1 ± 9.6% 0.0 ± 0.0% 0.1% 0%

LT
n=42784

5.5 ± 5.2% 0.0 ± 0.0% 0.1% 0%

ICD
n=42733

29.2 ± 3.7% 1.4 ± 1.7% 12.1% 0%

Matrix
n=38503

25.2 ± 3.4% 0.0 ± 0.0% 1.54% 0%

Table 3
Reliability coefficients for all connectivity measures obtained at a single 5-min scan for a
single site (ns'=1 and nd'=1), alongside standard deviations. Mean G- and D-coefficients
over significantly non-zero edges/voxels (Eρ

2, significant; Φ, significant) and over all
edges/voxels (Eρ

2, all; Φ, all).

Eρ
2 all Φ all Eρ

2 significant Φ significant

PCC
n=42784
nsig=17959

0.17 ± 0.15 0.16 ± 0.14 0.22 ± 0.15 0.21 ± 0.14

RMC
n=42784
nsig=7123

0.08 ± 0.08 0.07 ± 0.07 0.12 ± 0.10 0.12 ± 0.10

LT
n=42784
nsig=5240

0.07 ± 0.06 0.07 ± 0.06 0.08 ± 0.07 0.07 ± 0.07

ICD
n=42733
nsig=21427

0.16 ± 0.12 0.15 ± 0.11 0.17 ± 0.13 0.16 ± 0.12

Matrix
n=38503
nsig=16102

0.15 ± 0.12 0.14 ± 0.12 0.17 ± 0.13 0.16 ± 0.12
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shown in the main text and Supplemental Materials.

2.6. Outlier site identification via leave-one-site-out change in
variance

A complementary way of assessing for a site effect is to identify
outlier sites. This can be done by examining how the removal of each
site affects estimates of variance components (Forsyth et al., 2014;
Friedman et al., 2008). Variance components were estimated using the
3-way ANOVA with all random factors described in the previous
section (2.5 Assessing Reliability). Variance components were re-
estimated eight times, once for each possible set of seven sites while
excluding data from the other site. Variance components were also
estimated with all sites included (SI Table 3). The percent change in a
variance component due to removing a site was calculated as the
percent difference between the new variance component estimate with
the site excluded and the variance component estimate with all sites
included. Here, outlier sites are defined as sites consistently associated
with a change a variance component greater than two standard
deviations from the mean change in a variance component.

3. Results

In this section, we present functional connectivity results based on
each of the three connectivity analysis methods: seed-to-whole-brain
connectivity (“seed”), the distribution of connectivity attributed to each
voxel (“ICD”), and parcellation-based whole-brain connectivity (“ma-
trix”). For each method, we report results from: (1) a GLM analysis
modeling the relationship between connectivity and four regressor
variables (subject, site, scanner manufacturer and days); here, subject
effects are desirable and site, scanner manufacturer, and day effects are
undesirable; (2) a reliability analysis to assess the consistency of
subject measurements across sites and days; and (3) a leave-one-site-
out analysis to directly assess the contributions of individual sites to the
cross-site variance.

3.1. Regressors of seed-to-whole-brain connectivity

We investigated seed-to-whole-brain connectivity using three seed
regions of interest: the posterior cingulate cortex (PCC), right motor
cortex (RMC) and left thalamus (LT). In general, there were minimal
effects of site, scanner manufacturer, or day, while the main effect of
subject dominated (Fig. 1, Table 1, Table 2, SI Table 4). Very few edges
showed a significant effect of site ( < 0.5% of 42784 edges for each seed,
p < 0.05, FDR-corrected). Using the GLM to investigate individual
sites, no site effects were found for five of the eight sites. For the
remaining three sites (4, 6, and 7), a very small proportion of edges
showed significant site effects ( < 0.05% of 42784 edges, p < 0.05, FDR-
corrected). Voxels associated with these edges were not restricted to
any particular region.

Similarly, very few edges showed a significant effect of scanner
manufacturer (Siemens vs. GE) (2.2% of edges for PCC; 0.4% for RMC;
0.1% for LT). Voxels associated with these edges were not restricted to
a single region. No significant day effects were found.

Many more edges showed significant subject effects than site,
scanner manufacturer, or day effects. The majority of edges showed a
significant effect of subject (65–100% of 42784 edges, p < 0.05, FDR-
corrected), 1–3 orders of magnitude larger than the proportion of
edges showing a significant effect of site or scanner manufacturer.
Using the GLM to investigate individual subjects, on average, 25.9 ±
4.4% of edges in the PCC seed connectivity map showed significant
subject effects. On average for seven out of eight subjects, 3.8 ± 2.1% of
RMC and 4.0 ± 3.3% of LT seed connectivity maps showed significant
subject effects; the other subject's connectivity map showed a much
larger proportion of subject effects (30.3% for RMC, 15.9% for LT).
Edges showing significant subject effects were distributed throughout
the brain. Maps for individual subject and site effects can be found in SI
Fig. 2.

3.2. Reliability of seed-to-whole brain connectivity

For this Generalizability Study, there was typically smaller variance

Fig. 1. Map of edges showing significant effects (p < 0.05, FDR-corrected) on seed-based connectivity for each individual site, subject, and scanner manufacturer regressor. No day
effects were found. Only one case is shown for scanner manufacturer because GLM estimates are identical for each regressor when there are only two regressors. Contrasts were made
between individual regressors (e.g., subject 1) and the grand mean of that group of regressors (e.g., all subjects). For each group of regressors, brighter colors represent edges affected by
multiple cases (e.g., for the subject group, an orange edge indicates that the contrast was significant in that edge for four out of eight subjects).
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attributed to site (1.8–1.9%) and day (0.6–0.7%), relative to subject
variance (7.0–22.3%); however, residual variance dominated (63.1–
80.3%) (SI Table 2). The proportion of variance attributed to subject
was more than twice as large for PCC connectivity as for LT and RMC
connectivity, with a smaller residual for PCC connectivity compared
with the other seeds.

Using a single 5-min run (nd′=1), relative reliability (Eρ
2) was

found to be 0.17 ± 0.15 for PCC, 0.08 ± 0.08 for RMC, and 0.07 ± 0.06
for LT (Table 3). Using 25 min of data (nd′=5), relative reliability was
found to be 0.36 ± 0.24 for PCC, 0.22 ± 0.18 for RMC, and 0.21 ± 0.17
for LT. The Decision Study results for data averaged over other
numbers of days (nd′) can be found in Fig. 2. For all seed connectivity
maps, absolute reliability (Φ) was 0.001–0.01 units below relative
reliability (Eρ

2).

3.3. Leave-one-site-out effects on seed connectivity variance
components

All variance components were calculated with one site at a time
removed (SI Table 5). Of all 21 variance components calculated for
each site (7 variance components×3 connectivity measures), no site
was associated with more than a single outlier component.

3.4. Regressors of ICD

Our second set of analyses tested reliability of ICD, a voxel-wise

measure of global connectivity. More subject effects were found than
site, scanner manufacturer, and day effects on ICD; however, in
contrast to the results of the seed analysis, site and scanner manu-
facturer effects were non-negligible (Fig. 3, Table 1, Table 2, SI
Table 6). Nearly half of all voxels showed a significant effect of site
(43.5% of 42733 voxels, p < 0.05, FDR-corrected). Using the GLM to
investigate individual sites, no site effects were found for two of the
eight sites. For each of the remaining six sites (1, 2, 3, 4, 6, and 7), a
small proportion of voxels showed significant site effects (1.9 ± 1.7% of
42733 voxels, p < 0.05, FDR-corrected). Many of these voxels were
located in a large cluster on the inferior and medial surfaces of the
inferior prefrontal cortex.

18.7% of voxels showed significant scanner manufacturer effects
(Siemens vs. GE). Like those voxels showing significant site effects,
many of these voxels were clustered on the inferior and medial surfaces
of the inferior prefrontal cortex likely due to low SNR in these regions.
No significant day effects were found.

All voxels showed a significant effect of subject (p < 0.05, FDR-
corrected), which is approximately double the quantity of voxels that
showed a significant effect of site and approximately five times the
quantity of voxels that showed a significant effect of scanner manu-
facturer. Using the GLM to investigate individual subjects, on average,
29.2 ± 3.7% of voxels showed significant subject effects. Voxels
showing significant subject effects were distributed throughout the
brain. In general, ICD showed a larger proportion of individual site and
scanner manufacturer effects than was found in seed and matrix

Fig. 2. Decision Study violin plots showing the distribution of G-coefficients for seed-based connectivity obtained from increasing amounts of data. The x-axis reflects the number of
days over which data is averaged. The mean (diamond) and standard deviation (bars) are shown. Results categorized as follows: poor < 0.4, fair=0.4–0.59, good=0.6–0.74, excellent >
0.74 (Cicchetti and Sparrow, 1981).
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connectivity. Maps for individual subject and site effects can be found
in SI Fig. 3.

3.5. Reliability of ICD

For this Generalizability Study, there was relatively smaller var-
iance attributed to site (4.8%) and day (0.7%), relative to subject
(16.4%); however, residual variance dominated (62.7%) (SI Table 2).
Using a single 5-min run (nd′=1), relative reliability (Eρ

2) was found to
be 0.16 ± 0.12 (Table 3). Using 25 min of data (nd′=5), relative
reliability was found to be 0.36 ± 0.21. The Decision Study results for

data averaged over other numbers of days (nd′) can be found in Fig. 4.
Absolute reliability (Φ) was 0.01 units below relative reliability (Eρ

2).
All other voxel-wise connectivity measures (degree, positive GBC,

and full GBC) showed similarly non-negligible quantities of site effects
as ICD (33–39%) (SI Table 7). Numerically, ICD showed a slightly
greater proportion of site effects and slightly greater reliability than the
other voxel-wise connectivity measures (SI Table 7).

3.6. Leave-one-site-out effects on ICD variance components

ICD-related variance components were calculated upon removal of
each site (SI Table 8). No sites were associated with any outlier
variance components.

3.7. Regressors of matrix connectivity

In the connectivity matrix-based approach, we calculated edge
strength between all pairs of nodes in a 278-node atlas. As in the
seed-based connectivity results, there were minimal effects of site,
scanner manufacturer, or day, on edge values, while the main effect of
subject dominated (Fig. 5, Table 1, Table 2, SI Table 9). Few edges
showed a significant effect of site (4.2% of 38503 edges, p < 0.05, FDR-
corrected). Using the GLM to investigate individual sites, no site effects
were found for four of the eight sites. For the remaining four sites (1, 3,
4, and 6), a very small proportion of edges showed significant site
effects (0.02 ± 0.04% of 38503 edges, p < 0.05, FDR-corrected). These
edges were not restricted to a single region.

Similarly, very few edges showed a significant effect of scanner
manufacturer (Siemens vs. GE) (3.5% of 38503 edges). These edges
were not restricted to a single region. No significant day effects were
found.

All edges showed a significant effect of subject (p < 0.05, FDR-
corrected), which is two orders of magnitude larger than those showing
a significant effect of site or scanner manufacturer. Using the GLM to
investigate individual subjects, on average, 25.2 ± 3.4% of edges
showed significant subject effects. Edges showing significant subject
effects were distributed throughout the brain. Matrices for individual
subject and site effects can be found in Supplemental Materials (SI
Fig. 4).

3.8. Reliability of connectivity matrices

For this Generalizability Study, there was relatively smaller var-
iance attributed to site (2.5%) and day (0.6%), relative to subject
(16.7%); however, residual variance dominated (67.6%) (SI Table 2).
Using a single 5-min run (nd′=1), relative reliability (Eρ

2) was found to
be 0.15 ± 0.12 (Table 3). Using 25 min of data (nd′=5), relative
reliability was found to be 0.34 ± 0.22. The Decision Study results for
data averaged over other numbers of days (nd′) can be found in Fig. 6.
Absolute reliability (Φ) was 0.01 units below relative reliability (Eρ

2).
Between the two parcellation atlases used to derive matrix con-

Fig. 3. Map of voxels showing significant effects (p < 0.05, FDR-corrected) on ICD for
each individual site, subject, and scanner manufacturer regressor. No day effects were
found. Only one case is shown for scanner manufacturer because GLM estimates are
identical for each regressor when there are only two regressors. Contrasts were made
between individual regressors (e.g., subject 1) and the grand mean of that group of
regressors (e.g., all subjects). For each group of regressors, brighter colors represent
voxels affected by multiple cases (e.g., for the subject group, an orange edge indicates that
the contrast was significant in that edge for four out of eight subjects).

Fig. 4. Decision Study violin plots showing the distribution of G-coefficients for ICD obtained from increasing amounts of data. The x-axis reflects the number of days over which data is
averaged. The mean (diamond) and standard deviation (bars) are shown. Results categorized as follows: poor < 0.4, fair=0.4–0.59, good=0.6–0.74, excellent > 0.74 (Cicchetti and
Sparrow, 1981).
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nectivity, the functional atlas exhibited numerically greater reliability
than the AAL atlas (SI Table 10).

3.9. Leave-one-site-out effects on matrix connectivity variance
components

Matrix variance components were calculated upon removal of each
site (SI Table 11). Of all 7 variance components calculated for each site,
no site was associated with more than a single outlier component.

Trends in leave-one-site-out effects on main effect variance com-
ponents for all connectivity measures are further explored in the
Supplemental Materials (SI Fig. 5).

4. Discussion

Despite the growing number of multisite functional connectivity
studies, the influence of site/scanner manufacturer effects relative to
subject effects on functional connectivity has not been directly inves-
tigated. This study assessed stability of functional connectivity across
sites using three complementary approaches: (1) seed connectivity,
with seeds in the posterior cingulate cortex (PCC), right motor cortex
(RMC), and left thalamus (LT); (2) the intrinsic connectivity distribu-

tion (ICD), a measure of voxel-wise connectivity; and (3) matrix
connectivity, a measure of whole-brain connectivity between nodes.
Overall, results indicate that univariate measurements of functional
connectivity do not show major site, scanner manufacturer, or day
effects; rather, as anticipated, subject effects dominated relative to the
other measured factors. Furthermore, no particular site was found to
be a major outlier via a leave-one-site-out analysis of variance.
However, summaries of voxel-wise connectivity do appear to be
sensitive to site effects. Together, these results are encouraging for
pooling resting state functional connectivity data across sites. However,
it is recommended to maximize the amount of data per subject as
residual errors are large.

In an analysis of factors influencing univariate connectivity, no
major site, scanner manufacturer, or day effects were found. Instead,
most differences in univariate connectivity were attributed to subject.
In a separate analysis, subject effects were found to consistently
dominate relative to the other measured factors across different
FDR-corrected and uncorrected significance thresholds relative to the
other measured factors (SI Fig. 6); subject effects were particularly
large relative to site and day effects across FDR-corrected thresholds.
From the matrix connectivity analysis, the edges that were most unique
to subjects occurred between bilateral motor regions, between bilateral

Fig. 5. Summary map of inter-lobe edges showing significant effects (p < 0.05, FDR-corrected) on matrix connectivity for each individual site, subject, and scanner manufacturer
regressor. No day effects were found. Only one case is shown for scanner manufacturer because GLM estimates are identical for each regressor when there are only two regressors. These
maps correspond with Figs. 1 and 3, but are summarized for visualization purposes. 278 regions are organized into 10 roughly anterior-to-posterior lobes: prefrontal cortex (PFC), motor
cortex (Mot), insula (Ins), parietal cortex (Par), temporal cortex (Tmp), occipital cortex (Occ), limbic system (Lmb), cerebellum (Cbl), subcortex (Sub), and brainstem (Bst). A single
inter-lobe edge in the summary map represents the mean number of affected cases for all edges between the two lobes. For example, the inter-lobe edge between right and left motor
cortex under the “3–4 subjects different” heading indicates that, on average, edges between right and left motor cortex are unique to 3–4 subjects. Brighter (more yellow) colors also
represent inter-lobe edges affected by multiple cases.

Fig. 6. Decision Study violin plots showing the distribution of G-coefficients for matrix connectivity obtained from increasing amounts of data. The x-axis reflects the number of days
over which data is averaged. The mean (diamond) and standard deviation (bars) are shown. Results categorized as follows: poor < 0.4, fair=0.4–0.59, good=0.6–0.74, excellent > 0.74
(Cicchetti and Sparrow, 1981).
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occipital regions, and between right prefrontal regions (Figs. 5, 3–4
subjects different), with more unique edges between cortical rather
than non-cortical regions (Fig. 1, PCC; Fig. 5). The least unique edges
were associated with the brainstem (Figs. 5, 0–1 subjects different).
This may be due to the association of the brainstem with physiological
noise (Brooks et al., 2013) and/or its small size (D’Ardenne et al.,
2008). Note that the GLM results should be interpreted with caution;
since each level tested was included in the grand mean, this is not fully
the most powerful test for assessing individual level effects. However, it
does provide a useful framework for comparing different levels, since
all levels are compared to the same reference.

More complex summaries of voxel-wise connectivity did, however,
exhibit extensive site effects. ICD, wGBC, and degree all showed fewer
site and scanner effects relative to subject effects but site and scanner
manufacturer effects were still present in a large portion (half to one-
fifth) of the brain. Numerically, ICD showed slightly greater site effects
and slightly better reliability than the other voxel-wise connectivity
measures. Site and scanner manufacturer effects were largely restricted
to inferior prefrontal cortex, where SNR is often low due to suscept-
ibility effects associated with the frontal sinuses. Differences in
smoothing between scanner manufacturers may underlie the spatial
specificity of the affected regions. Voxel-wise connectivity measures
have been shown to be sensitive to differences in smoothing (Scheinost
et al., 2014b), and adjacent voxels containing unique signals—such as
brain and sinus in this case—may be especially susceptible to SNR
reduction. Note that while a reduction in SNR of an area may result in
estimates of weaker connectivity, these weak but non-zero estimates
are not necessarily unreliable. For example, consider the influence of
smoothing on the correlation between a prefrontal voxel adjacent to the
sinuses and another region functionally related to that voxel. Different
degrees of smoothing will result in different amounts of noise (from
sinus measurements) being mixed into an area containing signal (the
brain voxel). If one scanner employs minimal smoothing, the correla-
tion between the related areas may register as high, whereas a different
scanner that employs moderate smoothing may reliably estimate that
correlation as being low. In these cases, connectivity measurements
may be precise (low variance) yet different from one another.
Nevertheless, all voxel-wise connectivity measures were found to be
as or almost as reliable numerically as matrix connectivity and equally
sensitive to subject effects. Obtaining similar levels of reliability despite
exhibiting many more site effects suggests that voxel-wise connectivity
methods are generally more sensitive to all sources of variability,
desirable and undesirable.

The Generalizability Study revealed that the factor that most
contributed to univariate connectivity variance was subject (~13%),
followed by smaller contributions due to site (~2%) and day ( < 1%). As
described above, ICD exhibited a greater quantity of site effects (~5%).
Numerically, PCC seed connectivity demonstrated the greatest relia-
bility, followed by ICD and matrix connectivity, then RMC seed
connectivity, then LT seed connectivity. Even though the central aim
of this study was to assess for site effects—which were found to be
minimal for univariate measures of connectivity—the relatively large
residual variance (~72%) is notable. As a result, the relative reliability
of connectivity measured over a single 5 min run was poor (0.07–0.17),
with similar absolute reliability (SI Fig. 7).

Altogether, our results suggest that obtaining reliable measure-
ments at the single-subject level is very difficult. In general, the
literature on the reliability of functional connectivity is mixed (cf.
Bennett and Miller, 2010), in part because of variability in the measure
of reliability, study designs, and processing choices. Matrix connectivity
generated from 9 min of data may exhibit “respectable reproducibility,”
(Laumann et al., 2015) but the authors suggested collection of more
data to obtain more precise estimates. In another study, reliability of
connectivity obtained from 6 min scans at a single site was found to be
“minimal to robust”—that is, reliability of connectivity between sets of
seeds was found to be minimal, but reliability of certain edges was

found to be high (Shehzad et al., 2009). As an aside, the present study
correspondingly found that PCC seed connectivity exhibited the great-
est reliability compared with other seeds and a connectivity matrix, and
that statistically significant edges exhibited greater reliability than non-
significant edges, perhaps because significant edges reflect a biologi-
cally plausible relationship between brain regions (Friston, 1994). The
reliability of network definitions and other network measures has also
been investigated: previous work has demonstrated good reproduci-
bility of functional parcellation (Laumann et al., 2015), moderate to
high reliability of resting brain network boundaries across techniques
(Jann et al., 2015), moderate to high reliability of network membership
(Zuo et al., 2010), and low to moderate reliability for network-theory
metrics of functional connectivity (Braun et al., 2012; Wang et al., 2011
cf. Andellini et al., 2015; Telesford et al., 2010). In contrast, reliability
of anatomical measurements via structural MRI is quite high (Cannon
et al., 2014). In this study, reliability of functional connectivity
averaged over all measurements for a subject (8 sites×2 days) was fair
to good, which is comparable in magnitude to corresponding reliability
estimates for measures of task-based activation in fMRI in similar
traveling subjects studies (Forsyth et al., 2014, Gee et al., 2015,
Friedman et al., 2008). However, reliability at a single 5-min scan is
lower.

Single-subject reliability is diminished by the high residual. The
residual reflects the variability across all scans not accounted for by the
main effects of subject, site, and day-of-scan and their two-way
interactions. Similar proportions of residual variance (60–80%) have
been found in task-based fMRI and attributed to variability in cognitive
strategy or attention within or across scans (Gee et al., 2015; Forsyth
et al., 2014). In the context of resting-state connectivity, a large
residual suggests that brain connectivity and/or the scanner are
unstable within or across scans—the extent to which this instability is
stationary is under investigation (Hutchison et al., 2013; Jones et al.,
2012). One of the most important tools we have for increasing the
reliability of a measurement is to reduce measurement error by
increasing the number of samples of the measurement. In agreement
with this, many have suggested that brain networks may only be
partially characterized in such a short time period as 5 min.
Reproducibility may greatly improve with scanning durations of
10 min (Finn et al., 2015; Hacker et al., 2013), 13 min (Birn et al.,
2013), 20 min (Anderson et al., 2011), or even 90 min (Laumann et al.,
2015). The present findings suggest that “fair” reliability may be
obtained for some measures with a minimum of five repeated 5-min
sessions (25 min or 770 volumes in total). Besides increasing scan
duration, more data may be acquired per subject by increasing the
temporal resolution of the data through multiband acquisitions (cf.
Feinberg and Yacoub, 2012). Significantly, increasing temporal resolu-
tion (i.e., shorter TRs), as multiband allows, has been found to improve
the statistical power of task-based (Constable and Spencer, 2001) and
functional connectivity analyses (Feinberg and Setsompop, 2013).
These emerging bodies of evidence unambiguously underscore the
necessity for increasing statistical power for single-subject analyses by
increasing the amount of data acquired per subject.

There are several limitations to this work. First, more samples
would enable a more accurate assessment of reliability. This is
particularly notable in the context of the Decision Study, which is
limited by the generalizability of the measured factor structure. This
can be accomplished by increasing the number of subjects, sessions,
and data acquired per subject (e.g., scan duration, temporal resolu-
tion). Although more subjects and sessions would have been useful, it is
practically challenging to accomplish in a context where each subject
must travel to each of eight distinct sites. Second, this research was
conducted in healthy, non-adolescent individuals. Variance between
subjects may change slightly in different populations, e.g., clinical or
adolescent populations, which can affect the calculation of reliability;
for example, test-retest reliability has been shown to differ between
ADHD and normal populations (Somandepalli et al., 2015). However,
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this is not expected to change the estimate of site effects. Similarly,
while overall head motion was typical in these scans and reliability did
not appear to be influenced by the removal of subjects with the most or
least motion (SI Table 12), motion may serve as a confound of
reliability in other cases (Van Dijk et al., 2012). Finally, we limited
our investigation to the reliability of univariate network metrics
because univariate analyses are predominant in the field. Although
outside the scope of this investigation, it would be highly informative to
quantify the reliability of network topological characteristics such as
global clustering coefficient and global efficiency.

It is also worthwhile to consider the limitations of the reliability
measure used here. First, the ICC obtained from averaging data over
multiple days is informative, but many researchers prefer to average
data over multiple runs instead of multiple days. Individuals may be
more variable across days than runs, so this multi-day reliability may
not fully approximate multi-run reliability. Second, it is imperative to
note that most reliability measures, including those used in the present
study, pertain to single-subject reliability, not group-level reliability.
These results certainly suggest that individual measures of functional
connectivity derived from 5 min of data exhibit low reliability. This is a
challenge for analyses conducted at the individual level, but group-level
reliability is likely to be much greater. Group-level analyses—which
comprise most fMRI analyses—increase power by averaging over
multiple subjects. Quantifying the reliability of group-level analyses is
a more complicated question and remains to be investigated. However,
this study has the following implications for group-level analyses: (1)
there is little evidence of structured differences across sites, supporting
the integration of fcMRI data across multiple sites as one means to
increase power in group studies, and (2) reliability of group level data
can likely be improved by collecting more reliable single-subject level
data.

The results presented here suggest ways to maximize the reliability
of multisite functional connectivity studies. First, despite relatively few
( < 4%) scanner manufacturer effects on univariate connectivity, the
scanner manufacturer effect was typically greater than the site effect.
Therefore, there may be a true difference between measurements
across manufacturers, and studies should attempt to evenly distribute
subjects across scanners produced by different manufacturers. Second,
the large residual suggests that studies seriously consider incorporating
ways to increase the amount of data, both through subject recruitment,
e.g., multisite studies, and through acquisition procedures, e.g., the use
of short-TR multiband sequences and longer scan durations, as
described above. Third, the connectivity matrices based on a functional
atlas exhibited greater reliability than two of the three anatomical seeds
and the anatomical AAL atlas. This is likely because combining activity
within coherent regions strengthens the SNR whereas mixing time-
courses within a region may lead to erroneous time-courses. Previous
work has shown that activity is more coherent when functional rather
than anatomical parcellations are used (Shen et al., 2013). Therefore,
using a functional parcellation rather than an anatomical parcellation
is recommended. Fourth, voxel-wise connectivity measures may be
more sensitive to site differences in inferior prefrontal cortex, thus
particular caution should be exercised when interpreting results in this
region in voxel-wise analyses.

In conclusion, this work provides evidence that univariate func-
tional connectivity data can be pooled across multiple sites and
sessions without major site or session confounds. No major effects of
site, scanner manufacturer, or day were found in the univariate
connectivity methods, although summaries of voxel-wise connectivity
do appear to be influenced by site. Increased power through collection
of more fMRI data—both more subjects and more data per subject—is
always beneficial and this study suggests that adding data from
multiple sites in a multisite study is an excellent way to increase
statistical power. Therefore, results indicate that the increasing number
of large multicenter fMRI studies, such as NAPLS, represent a step in
the right direction for improved assessment of functional connectivity

and its relationship to phenotypes of interest in both health and
disease.
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