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Methylphenidate Modulates Functional Network
Connectivity to Enhance Attention
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Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about
cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a
connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a
high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-
attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomark-
ers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an
independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we
examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated
controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention:
higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention
network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with
greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher
go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate
acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may
help improve attention.
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Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks.
To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common
and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate
showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than
controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and
that changing whole-brain connectivity patterns may improve attention. /

ignificance Statement

the healthy population or have contrasted two groups, such as
patients and controls. There is growing interest, however, in
identifying neuromarkers of traits, behavior, clinical symptoms,
and response to treatment to generate predictions about individ-
ual subjects (Whelan et al., 2014; Gabrieli et al., 2015). Encour-
aging work has identified connectivity-based biomarkers of
sustained attention (Kessler et al., 2016; Rosenberg et al., 2016),

Introduction
FMRI studies of human brain functional connectivity have tradi-
tionally described common features of network organization in
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Table 1. Age and gender in participants with resting-state and task data

Rosenberg et al. @ Methylphenidate Modulates Attention Networks

Rest cohort Task cohort

Number Number
Group Males Females Mean age in years (SD) Males Females Mean age in years (SD)
Methylphenidate group 9 7 24.7 (3.9) 6 13 23.9(4.7)
Control group 21 35 249 (3.6) 25 39 253(3.7)

Between-group comparison” XY (L,N=72)=18p=018

ty = 0.23,p = 0.82

Y2 (1, N =83) = 035,p = 055 gy = 139,p =017

X Tests for independence were used to examine the relationship between gender and group membership.

distractibility (Poole et al., 2016), fluid intelligence (Smith et al.,
2013; Finn et al., 2015), and response to math tutoring (Supekar
etal., 2013). Investigating neuromarkers’ generalizability and re-
sponse to intervention will help clarify their functional roles and
increase their clinical applicability.

We recently used a new technique, connectome-based pre-
dictive modeling (CPM; Finn et al., 2015; Rosenberg et al., 2016),
to identify neuromarkers of sustained attention (Rosenberg et al.,
2016). Sustained attention, the ability to maintain vigilance and
focus over time, is an important aspect of attention frequently
compromised in healthy and clinical populations (Robertson et
al., 1997; Marchetta et al., 2008). CPM identified two functional
networks related to sustained-attention task performance: a
high-attention network of connections positively correlated with
performance across individuals and a low-attention network of
connections negatively correlated with performance. Models
based on strength in these networks predicted novel individuals’
performance from task-based and resting-state connectivity, and
generalized to predict attention-deficit/hyperactivity disorder
(ADHD) symptom severity in an independent group of children
and adolescents from resting-state connectivity alone. Although
there is strong evidence that these networks are reliable neuro-
markers of sustained attention, their roles in attention and flexi-
bility in response to treatment is not yet known.

One way to assess whether the high-attention and low-
attention networks play a causal role in sustained attention is to
perturb them and observe effects on behavior. However, because
of the networks’ distributed anatomy, which involves hundreds
of edges and >100 overlapping nodes, selectively modulating
their strength would be challenging. Another approach is to
modify attentional abilities and examine effects on functional
connectivity.

To investigate whether connectivity signatures of better sus-
tained attention accompany interventions that improve atten-
tion, we compared attention network strength in healthy adults
given a single dose of methylphenidate with network strength
in unmedicated controls. Methylphenidate, a psychostimulant
known by such trade names Ritalin and Concerta, is a common
and effective pharmacological ADHD treatment (Goldman et al.,
1998). Methylphenidate works by blocking norepinephrine and
dopamine transporters, which increases extracellular catechol-
amine levels (Volkow et al., 2001; Berridge et al., 2006; Spencer et
al., 2015). The drug improves memory and inhibitory control
even in healthy populations (Ilieva et al., 2015). Therefore, we
predict that individuals given methylphenidate will have higher
high-attention and lower low-attention network strength than
controls.

Previous work has found widespread effects of methylpheni-
date on functional connectivity. One study of children with
ADHD found that methylphenidate normalized frontostriatal,
frontocerebellar, and cerebellar—striatal connectivity during vig-
ilance task performance (Rubia et al., 2011). Another, using

resting-state data from individuals with cocaine-use disorder,
showed that methylphenidate strengthened corticocortical and cor-
ticolimbic connections, and weakened connections between the
dorsal striatum and other subcortical regions (Konova et al., 2013).
Classifying medication state from healthy adults’ resting-state data,
Sripada and colleagues found that methylphenidate reduced con-
nectivity within visual and somatomotor networks and between de-
fault mode and dorsal attention, ventral attention, and visual
networks (Sripada et al., 2013). An earlier, seed-based analysis of
data presented here showed methylphenidate-related differ-
ences in thalamus and dorsal striatum connectivity (Farr et al.,
2014b). Thus, approaches that consider whole-brain connec-
tivity may be particularly well suited for studying methyl-
phenidate’s distributed effects.

Here we present preliminary evidence that the high-attention
and low-attention networks play a causal role in attention by
demonstrating that methylphenidate affects their connectivity in
predictable ways. That is, individuals given methylphenidate
showed higher high-attention and lower low-attention network
strength than unmedicated controls. This suggests that the sus-
tained attention networks are malleable and may be good candi-
dates for attention interventions.

Materials and Methods

Participants. We used a dataset described in detail in previous work (Farr
etal., 2014a,b). Briefly, 24 healthy participants were given a single 45 mg
dose of methylphenidate ~40 min before an fMRI scan session began.
Although participants in this group had been told that they would either
receive methylphenidate or a placebo, all received methylphenidate.
These participants were debriefed after the scan session and none were
sure that they had been given methylphenidate. Heart rate, blood pres-
sure, and anxiety were measured as described in Farr et al., 2014b;
changes in these from baseline measurements did not significantly cor-
relate with any fMRI connectivity measures (Farr et al., 2014b, their
Table S1). Ninety-two healthy participants were scanned as part of a
control cohort. Control participants did not receive any drug and were
not given any instructions about methylphenidate or placebo. Of this
group, we used data from 70 individuals from whom both task and
resting-state fMRI data had been collected.

After applying motion-exclusion criteria to task and resting-state runs,
we ended up with two final groups: a rest cohort of participants with
usable resting-state data, and a task cohort of participants with usable
task data (see below, Motion controls, for a detailed explanation of how
these groups were selected). The rest cohort included 16 individuals on
methylphenidate and 56 controls, and the task cohort included 19 indi-
viduals on methylphenidate and 64 controls. Twelve participants on
methylphenidate and 55 unmedicated controls appear in both cohorts.
Age and gender breakdown did not differ between groups in the rest or
the task cohort (Table 1).

Behavioral task. Participants performed a stop-signal task during fMRI
scanning (Farr et al., 2014a). Trials began with the appearance of a dot in
the center of a screen. After a random interval between 1 and 5 s, the dot
changed to a circle, the go signal. Participants were instructed to press a
button as quickly as possible when the go signal appeared. After 1 s or a
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button press, the circle disappeared. Anticipatory responses also termi-
nated the trial. Trials were separated by 2 s intervals.

On ~25% of trials, an “X,” the stop signal, replaced the go signal
shortly after it appeared. Participants were instructed to withhold re-
sponse on stop trials. The stop-signal delay (SSD), the time between go
and stop-signal onsets, was staircased within subject so that each partic-
ipant was able to withhold response on approximately half of stop trials.
The SSD began at 200 ms, and increased by 67 ms (making it more
difficult to inhibit responding) after successful stop trials and decreased
by 67 ms (making it easier to inhibit responding) after incorrect presses
on stop trials. For each participant, stop-signal reaction time (SSRT) was
computed by subtracting the critical SSD (the SSD required to success-
fully withhold response on 50% of stop trials) from the median reaction
time (RT) on go trials.

Imaging parameters and preprocessing. Scan sessions began with an
anatomical scan. Participants next completed four 9:50 min stop-signal
task runs and one 9:50 min resting-state run. During the resting-state
run, participants were instructed to remain awake but keep their eyes
closed.

FMRI data were collected at the Yale Magnetic Resonance Research
Center on a 3T Siemens Trio TIM system. Functional runs included 295
whole-brain volumes acquired using an echo-planar imaging sequence
with the following parameters: repetition time (TR) = 2000 ms; echo
time (TE) = 25 ms; flip angle, 85°; field of view, 220 X 220 mm; acqui-
sition matrix, 64 X 64; 32 axial slices parallel to the anterior commissure—
posterior commissure (AC-PC) line; slice thickness, 4 mm (no gap).
Parameters of the high-resolution T1-weighted gradient echo scan were
as follows: TR = 2530 ms; TE = 3.66 ms; flip angle, 7°; field of view,
256 X 256 mm; acquisition matrix, 256 X 256; 176 slices parallel to the
AC-PC line; slice thickness, 1 mm.

Data were analyzed using Biolmage Suite (Joshi et al., 2011; RRID:
SCR_002986) and custom Matlab scripts (Mathworks; RRID:SCR_001622).
Images were motion corrected using SPM8 (RRID:SCR_007037). Linear
and quadratic drift, mean signal from CSF, global signal, and a 24-parameter
motion model including six motion parameters, six temporal derivatives,
and their squares, were also regressed from the data. Data were temporally
smoothed with a zero mean unit variance Gaussian filter. Spatial smoothing
was not performed because work has demonstrated that smoothing volu-
metric data mixes signals from distinct cortical areas (Jo et al., 2007; Glasser
et al., 2013). However, averaging the time courses of all the voxels in each
node of our functional atlas (as described in Materials and Methods, Net-
work construction) selectively smooths the data within each node.

Motion controls. Runs with excessive head motion, defined a priori as
>2 mm translation, >3° rotation, or >0.15 mm mean frame-to-frame
displacement during a single run, were excluded from analysis. Six par-
ticipants were excluded from all further analyses because of excessive
motion in resting-state and task runs. Following visual inspection of the
pitch, roll, and yaw time courses, four resting-state runs with obvious
movements near the start or end were cropped to remove volumes asso-
ciated with excessive motion. The first 49 volumes were removed from
the beginning of two runs, the last 105 volumes were removed from the
end of one run, and the last 95 were removed from the end of another.
These newly cropped runs did not exceed >2 mm translation, >3° rota-
tion, or >0.15 mm mean frame-to-frame displacement. The resting-
state run was excluded from an additional 12 participants and all task
runs were excluded from two participants due to excessive motion. In
addition, one task run was excluded from 11 participants, two were ex-
cluded from four participants, and three were excluded from one partic-
ipant because of motion.

Following exclusion for motion, 88 participants (65 controls) with =1
run of data remained. Of these, 76 (56 controls) had a resting-state run
and 86 (64 controls) had =1 task run. To check whether the groups were
matched for motion, we performed unpaired, two-tailed ¢ tests compar-
ing maximum head displacement, maximum head rotation, and mean
frame-to-frame head motion during rest and task in the methylpheni-
date and control groups. In the individuals with rest data, there were no
between-group differences in maximum displacement or rotation dur-
ing rest (f,,, values <1.51, p values >0.13). However, there was signifi-
cantly greater frame-to-frame motion in the methylphenidate group
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(t(74) = 2.81, p = 0.006). In the individuals with task data, there were no
between-group differences in maximum displacement or rotation dur-
ing task performance ([¢g,)| values <0.32, p values >0.75). However,
mean frame-to-frame displacement was higher in the methylphenidate
group (g4 = 1.97, p = 0.052).

To eliminate groupwise differences in mean frame-to-frame displace-
ment, we excluded participants in the methylphenidate group with the
highest mean frame-to-frame displacement one by one until groups were
matched on all measures of motion. This resulted in the exclusion of
resting-state data from four participants and task data from three other
participants. In the final 72-participant rest cohort (the group of partic-
ipants with resting-state data, which included 56 controls), there were no
differences in maximum displacement, maximum rotation, or mean
frame-to-frame displacement during rest between the methylphenidate
and control groups (f,,, values <1.33, p values >0.18). There were also
no between-group differences in motion during task in the final 83-
participant task cohort (the group of participants with task data, which
included 64 controls; ¢4, values <1.22, p values >0.22). Importantly,
data were excluded for motion before connectivity data were analyzed.

We did not regress mean motion statistics from each edge because this
approach is limited to removing linear effects from the data (Power et al.,
2014). Previous work has shown that it does not eliminate motion artifacts;
instead, matching groups for motion is preferred (Hampson et al., 2012).

Network construction. Whole-brain functional connectivity was as-
sessed as described previously (Finn et al., 2015; Rosenberg et al., 2016).
Briefly, network nodes were defined using the Shen 268-node functional
brain atlas that included the cortex, subcortex, and cerebellum (Shen et
al,, 2013). The atlas was warped from MNI space into single-subject
space via concatenation of alinear and nonlinear registration between
the functional images, anatomical scans, and the MNI brain. The two
transformations were calculated independently, combined into a sin-
gle transform, and inverted. Transformations were estimated using
intensity-based registration algorithms in BioImage Suite (Joshi etal.,
2011).

For each participant in the task cohort, task matrices were calculated
using data concatenated across usable task runs; for participants in the
rest cohort, rest matrices were calculated using data from the single
resting-state run. The first three frames of every run were excluded from
analysis. For every node, a mean time course was calculated by averaging
the time courses of all of its constituent voxels. Pairwise correlations were
computed between all pairs of nodes, and Pearson correlation coeffi-
cients were Fisher z-transformed to yield symmetric 268 X 268 connec-
tivity matrices.

High-attention and low-attention network strength. Previous CPM
work identified two large-scale brain networks that predict attention
across individuals and datasets: a high-attention network (757 connec-
tions, or edges), whose strength predicts better attention (more success-
ful performance on a sustained-attention task and less severe ADHD
symptoms), and a low-attention network (630 edges), whose strength
predicts worse attention (poorer attention task performance and more
severe ADHD symptoms; Rosenberg et al., 2016). Both networks span
the cortex, subcortex, and cerebellum.

Because methylphenidate improves attention in both healthy and im-
paired populations, we hypothesized that individuals given the drug
would have higher high-attention network strength and lower low-
attention network strength than control subjects. In other words, partic-
ipants on methylphenidate should have connectivity profiles that look
similar to those of people with strong sustained attentional abilities.

To test this prediction, for each participant, we calculated high-attention
network strength as the dot product between the high-attention network
mask (a 268 X 268 matrix with ones in cells where an edge was present and
zeros elsewhere) and his or her task and/or rest matrix. Strength in the low-
attention network was calculated the same way using the low-attention net-
work mask. Unpaired, two-tailed t tests with no assumption of equal
variance were used to compare high-attention and low-attention network
strength in the methylphenidate and control groups during task and rest.

It is worth reiterating that the network-strength summary statistic
(Finn et al., 2015; Rosenberg et al., 2016) is calculated by summing
z-transformed correlation coefficients. Because these correlation coeffi-
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cients can be either positive or negative, raw network strength is not
especially informative. A network with a near-zero network strength value
could include many edges with values close to zero, or could include many
strongly positive and strongly negative edges. Rather, an individual’s net-
work strength is informative when considered relative to others. Addition-
ally, a network with many weakly connected edges will have a higher network
strength value than one with many strongly anticorrelated edges. It is there-
fore important to avoid making assumptions about the edge distribution of
a network based on its network strength value.

To evaluate whether observed differences between the methylphenidate
and control groups were unique to the sustained attention networks or at-
tributable to overall effects on connectivity, we compared the groupwise
difference in attention network strength with the difference in the strength of
size-matched random networks. To this end, we generated 1000 random
networks with 757 edges (the size of the high-attention network) and 1000
random networks with 630 edges (the size of the low-attention network).
Random networks were selected from the full set of 35,778 edges with the
constraint that they not include edges that appeared in either attention net-
work. For every participant in the rest cohort, we calculated strength in every
random network during rest, and for every participant in the task cohort, we
calculated strength in every random network during task performance. As
before, strength was calculated by summing the z-transformed r values in
each network. Unpaired, two-tailed ¢ tests with no assumption of equal vari-
ance were used to compare strength in these networks in the methylpheni-
date and control groups. By comparing the f statistics obtained from these
tests with the ¢ statistics obtained for the attention network comparisons
described above, we were able to determine how many random networks
differed between groups to an equal or greater degree than the attention
networks.

Methylphenidate networks. We used the Network Based Statistic (NBS)
Toolbox (RRID:SCR_002454; sites.google.com/site/bctnet/comparison/nbs) to
identify brain networks that differed between the methylphenidate and control
groups during rest and task. The NBS controls for the huge number of multiple
comparisons involved in testing for differences at every edge in a connectivity
matrix by comparing the size of identified networks with the size of random
networks (Zalesky et al., 2010).

First, unpaired, one-tailed f tests were performed at every edge in the
rest (and task) matrices (35,778 total) to identify edges that were greater
(i.e., had higher r-values) in either the methylphenidate or control group
at a chosen significance threshold. Next, the largest fully connected com-
ponent of edges was selected from this set. Group labels were then per-
muted 5000 times and a ¢ test was performed at every edge to obtain 5000
sets of edges that differed between the random groups. For each random-
ization, the size of the largest connected component of edges was re-
corded. The p value associated with the identified methylphenidate
network was computed as (1 + the number of random networks with
fully connected components equal to or larger than the identified net-
work)/(1 + the number of permutations). Networks were considered
significant if their associated p value was <0.004 (0.05 Bonferroni’s cor-
rected for 12 comparisons).

This procedure was repeated four times using each of three significance
thresholds at the edge-selection step (p << 0.001, p < 0.01, and p < 0.05) to
identify Methylphenidate > Control and Control > Methylphenidate net-
works in the rest and task cohorts. We refer to the Methylphenidate > Con-
trol networks as methylphenidate networks and the Control >
Methylphenidate networks as unmedicated networks.

Network overlap. Because methylphenidate is an effective treatment for
attention dysfunction, we hypothesized that there would be significant
overlap between the methylphenidate and high-attention networks, and
significant overlap between the unmedicated and low-attention net-
works. To investigate the relationship between the networks, we counted
the number of edges in the methylphenidate and unmedicated networks
that appeared in the high-attention and low-attention networks. The
significance of network overlap was determined with the hypergeometric
cumulative density function, which returns the probability of drawing up
to x of K possible items in n drawings without replacement from an
M-item population. This was implemented in Matlab as follows: p = 1 —
hygecdf(x, M, K, n), where x equals the number of overlapping edges, K
equals the number of edges in the attention network of interest (high,
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757; low, 630), n equals the number of edges in the methylphenidate
network of interest, and M equals the total number of edges in the matrix
(35,778).

Effects of methylphenidate on behavior. Previous work using this dataset
found that participants in the methylphenidate group responded more
frequently to go trials than did participants in the control group (Farr et
al., 2014a). We evaluated whether stop-signal task behavior differed be-
tween the methylphenidate and control groups in our sample with un-
paired, two-tailed ¢ tests with no assumption of equal variance. We tested
four behavioral measures: go response rate (the percentage of the time an
individual correctly responded to go trials), median go trial RT, critical
SSD (the estimated delay between a go and stop signal required for an
individual to successfully withhold response to half of all stop trials), and
SSRT (median go trial RT — critical SSD).

Behavioral prediction. The sustained attention CPM predicts atten-
tional performance, operationalized as sensitivity (d') on the gradual-
onset continuous performance task (Esterman et al., 2013; Rosenberg et
al.,, 2013), a challenging test of sustained attention, from high-attention
and low-attention network strength (Rosenberg et al., 2016). Although
the sustained attention CPM was designed to predict sustained atten-
tional abilities, it may also generalize to predict performance on other
attention tasks. Here we tested whether the sustained attention CPM
predicts performance on the stop-signal task, which measures inhibitory
control and impulsivity.

The sustained attention CPM includes the high-attention and low-
attention networks and a linear model with three terms: a coefficient for
high-attention network strength, a coefficient for low-attention network
strength, and a constant. For every participant in the task cohort, we
input high-attention and low-attention network strength during task to
the sustained attention CPM to generate a predicted d’. We performed an
identical analysis in the rest cohort to generate d’ predictions from
resting-state matrices. The model’s output, predicted d’, is a measure of
how we would expect that person to perform if they were given the same
taxing attention task that subjects in the model’s training set performed.
In essence, it is a predicted measure of a person’s overall ability to sustain
attention. Predictive power was assessed with Pearson correlations be-
tween predicted d’ values and four behavioral variables of interest (go
response rate, median go trial RT, SSD, and SSRT).

Results

High-attention and low-attention network strength

As predicted, strength in the high-attention network was signifi-
cantly higher in the methylphenidate group than in the control
group during rest (f,,5,) = 4.35, p = 0.002) and task perfor-
mance (f(sq,5 = 3.45, p = 0.001; Fig. 1). Also as expected,
strength in the low-attention network was lower in the methyl-
phenidate group than in the control group during rest (f.,7.¢s) =
—3.92, p = 0.005) and task performance (fs5939) = —2.29,
p = 0.027). Because the methylphenidate group showed higher
high-attention but lower low-attention network strength, meth-
ylphenidate’s effect cannot be explained by an overall effect on
functional connectivity. In addition, because the high-attention
and low-attention networks are anatomically intertwined, it is
highly unlikely that differences are explained by motion (see
Materials and Methods, Motion controls and, below, Network
strength motion control, for analyses ruling out motion con-
founds).

The difference in high-attention network strength between
the methylphenidate and control groups was greater than the
groupwise difference in the strength of 99.8% of random net-
works during rest (equivalent to a p value of 3/1001, or 0.003) and
98.7% of random networks during task (p = 0.014). The differ-
ence in low-attention network strength between the methyl-
phenidate and control groups was greater than the groupwise
difference in the strength of 99.8% of random networks during
rest (p = 0.003) and 90.9% of random networks during task
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Figure1.  Strengthin the high-attention network (orange) and low-attention network (turquoise) in the methylphenidate and control groups. Network strength was calculated in the rest cohort
during rest and the task cohort during task performance, and was normalized within each graph for visualization. Dots represent individual participants, horizontal lines denote group means, and
error bars represent standard error of the mean. *p << 0.05 corrected for four comparisons; tp = 0.027 uncorrected.

Table 2. High-motion and low-motion groups were defined independently in the rest and task cohorts?®

Rest cohort (n = 72) Task cohort(n = 83)

Total Methylphenidate Control Total Methylphenidate Control
High-motion group (n) 16 7 9 19 4 15
Low-motion group (n) 56 9 47 64 15 49
High-attention network strength t3gs2 = 0.09,p =093 te7 = 0.05,p = 0.96
Low-attention network strength tiasgz) = 0.43,p = 0.67 t24.08 = 0.65,p = 0.52

“The “High-attention network strength” and “Low-attention network strength” rows show the results of ¢ test comparing strength in the high-motion and low-motion groups.

(p = 0.09). Thus, the effects of methylphenidate are highly spe-  yield differences—even exaggerated ones. However, this expla-

cific to the previously identified attention networks. nation is unlikely because we did not observe significant differ-
ences in the strength of the high-attention or low-attention
Network strength motion control networks between the high-motion and low-motion groups dur-

Although the methylphenidate and control groups are statisti-  ing rest or task performance (Table 2).
cally matched for motion, even slight differences in head move-
ment could affect the attention network results. To ensure that ~ Methylphenidate network anatomy

motion does not account for our findings, we calculated high- =~ Weidentified networks that significantly differed between the meth-
attention and low-attention network strength in newly defined  ylphenidate and control groups during task performance and rest
“high-motion” and “low-motion” groups. (Figs. 2, 3). Depending on the primary significance threshold applied

First, in the rest cohort, we called the 16 participants with the  in the NBS procedure, networks ranged in size from hundreds to
highest mean frame-to-frame head movement during rest the  thousands of edges (Table 3), and spanned the cortex, subcortex,
“high-motion rest group,” and the remaining 56 participants  and cerebellum. Although network anatomy was complex, several
the “low-motion rest group.” These group sizes match the size of  trends emerged.
the methylphenidate and control groups in the rest cohort. Note, The Methylphenidate > Control, or methylphenidate, net-
however, that the high-motion group only had relatively high ~ works included connections between the cerebellum and motor,
motion, since strict motion-exclusion criteria had already been  parietal, temporal, and occipital cortices; connections between

applied. High-motion and low-motion task groups were also de-  the temporal lobe and limbic, subcortical, and brainstem regions;
fined using frame-to-frame head motion during task perfor-  and connections between motor cortex and the brainstem and
mance (Table 2). subcortex (Figs. 2, 4). Connections in the Control > Methyl-

If the high-attention and low-attention networks are simplya  phenidate, or unmedicated, networks fell between prefrontal,
group of edges differentially affected by motion, comparing net-  cerebellar, subcortical, and brainstem regions. The unmedicated

work strength in the high-motion and low-motion groups should ~ networks also included and temporal-parietal connections. The
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Control > Methylphenidate

Rest Task
— =~ Prefrontal
Temporal
Cerebellum
Brainstem

The first three rows of circle plots show the functional networks that significantly differ between the methylphenidate and control groups. The Methylphenidate > Control networks

(the methylphenidate networks) are shown in red and the Control > Methylphenidate networks (the unmedicated networks) are shown in blue. Networks were defined separately using task and
rest matrices with a range of thresholds at the edge-selection step. Edges in both the high-attention and methylphenidate networks and in both the low-attention and unmedicated networks are
shown in bold. The high-attention and low-attention networks, defined to predict performance on an attention task in an independent group of participants, are visualized in the fourth row of circle
plots. Nodes are grouped by macroscale region, including the prefrontal cortex, motor cortex, insula, parietal cortex, temporal cortex, occipital cortex, limbic lobe (including the cingulate cortex,
amygdala, and hippocampus), cerebellum, subcortex (thalamus and striatum), and brainstem. The right half of the circle represents the right hemisphere of the brain.

similarity of these patterns to the high-attention and low-
attention networks (Rosenberg et al., 2016) is striking given that
they were defined using different approaches (between-group ¢
tests with NBS correction vs regressions between edge strength
and d' on an attention task) in independent datasets collected
under different experimental designs, at different times, with dif-
ferent scan parameters. This remarkable consistency provides
further evidence that large-scale brain networks can serve as gen-
eralizable biomarkers of attention.

Mirroring a pattern observed in the sustained attention net-
works, the cerebellum played an important role in the methyl-
phenidate and unmedicated networks during task and rest.
Again, the number of connections between the cerebellum and
motor, parietal, temporal, and occipital regions was consistently
greater in the methylphenidate networks (Fig. 4), whereas the
number of within-cerebellar connections and connections be-
tween the cerebellum and subcortical, brainstem, prefrontal, and
limbic regions was consistently greater in the unmedicated net-
works. The frequent participation of the cerebellum in both net-
works is noteworthy given recent emphasis on the cerebellum’s
role in functional connectivity networks related to cognition
(Habas et al., 2009; Buckner et al., 2011).

Connectivity differences between the methylphenidate and
control groups were generally similar across resting-state and
task-based connectivity, which makes sense given previous work
showing that an individual’s unique connectivity pattern is re-

markably consistent across cognitive states (Finn et al., 2015).
Difference matrices, calculated by subtracting the number of
edges between each pair of macroscale regions in the unmedi-
cated network from the number in the methylphenidate network,
were highly correlated across the states (r = 0.80; Fig. 4). Limbic
and occipital lobes were notable exceptions. Occipitomotor con-
nections and connections between limbic regions and prefrontal,
insular, and subcortical regions were more likely to appear in the
unmedicated network during rest but in the methylphenidate
network during task performance. On the other hand, connec-
tions between limbic regions and motor, parietal, and occipital
cortices, and connections between occipital cortex and insular,
temporal, and brainstem regions were more likely to appear in
the methylphenidate network during rest but in the unmedicated
network during task. That said, differences between effects of
methylphenidate on task-based and resting-state connectivity are
difficult to interpret because the task and rest cohorts contain
overlapping but different groups of participants, and there are
=4 times more task-based than resting-state data for each partic-
ipant. Future work should further consider the interaction be-
tween effects of methylphenidate and cognitive state.

Network overlap

As hypothesized, there was significant overlap between the meth-
ylphenidate and high-attention networks and between the un-
medicated and low-attention networks (Fig. 2, connections in
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Methylphenidate > Control
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Figure 3.

hemisphere of the brain.

bold). There was no significant overlap between the methyl-
phenidate and low-attention networks, or between the unmedi-
cated and high-attention networks. This pattern of results held
during task and at rest, and at every significance threshold applied
at the edge-selection step during the methylphenidate network
definition (Fig. 5 and Table 4).

Of the edges that appeared in both the high-attention and meth-
ylphenidate networks, the majority involved the cerebellum (42% of
overlapping edges at rest and 50% of overlapping edges during stop-
signal task performance), temporal lobe (49% at rest and 40% dur-
ing task), or occipital lobe (29% at rest and 37% during task). Note
that percentages can sum to >100% because each edge involves two
nodes that may be in different macroscale brain regions. Of the edges
that overlapped between the low-attention and unmedicated net-

Functional networks that differ between the methylphenidate and control groups at an edge-selection threshold of
p = 0.001 (these networks are also shown in Fig. 2, third row of circle plots). Lines represent edges that differ between groups;
lines in bold represent edges that also appear in the high-attention or low-attention network. Spheres, representing nodes, are
sized according to the number of edges in which they participate. The right hemisphere of the axial view represents the right
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works, a similar pattern emerged. Edges
were most likely to involve the cerebellum
(57% of overlapping edges at rest and 50%
of overlapping edges during task) or tempo-
ral lobe (24% at rest and 40% during task).
The occipital lobe was heavily represented in
the overlapping edges during task perfor-
mance (37%), but not rest (5%). The in-
volvement of cerebellar, temporal, and
occipital connections in both the methyl-
phenidate and control networks reinforces
the importance of considering node pairs
rather than nodes in isolation when predict-
ing attention.

Effects of methylphenidate on behavior
Similar to previous work analyzing a
superset of these data (we used fewer
participants due to stricter motion-
exclusion criteria; Farr et al., 2014a),
there were no differences in behavioral
performance in the rest and task cohorts
that survived Bonferroni’s correction
for multiple comparisons. Although this
difference did not survive correction
for multiple comparisons, the methyl-
phenidate group of our task cohort re-
sponded more frequently to go trials
than did the control group (99.2 vs
97.9%, f4750 = 2.51, p = 0.016). In
the rest cohort, the go response rate
was 99.2% in the methylphenidate
group and 98.2% in the control group
(ta9.64y = 1.91, p = 0.07). More pro-
nounced effects of methylphenidate on
performance might have been observed
in a sample of patients with ADHD as
opposed to healthy adults (Farr et al,,
2014a).

Behavioral prediction

Predictions of the sustained attention
CPM, which was trained in an indepen-
dent dataset, were significantly correlated
with the go response rate in the task and
rest cohorts (predictions from resting-
state connectivity: r = 0.34, p = 0.004;
predictions from task-based connectivity:
r=10.59, p = 4.8¢ ~%; both survive Bonfer-
roni’s correction for eight comparisons; Fig. 6; recall that the rest
cohort includes participants with a usable resting-state matrix
and the task cohort includes participants with a usable task ma-
trix, so the groups largely but not completely overlap). That is,
when the model predicted that a person had a strong ability to
sustain attention based on a connectivity pattern observed during
task performance or rest alone, he or she made more-frequent
correct responses to go trials on the stop-signal task. These cor-
relations were not solely driven by the higher go response rate and
higher high-attention network strength in the methylphenidate
group, as predictions were correlated with the go response rate in
the control group alone (rest: r = 0.31, p = 0.02; task: r = 0.63,
p = 2.5¢®). Sustained attention CPM predictions were not sig-
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Table 3. Size and significance of networks that differed between the methylphenidate and control groups during rest and task performance. P values were determined

using the NBS with 5000 permutations

Significance threshold Methylphenidate > control Control > methylphenidate

at edge selection Rest cohort Task cohort Rest cohort Task cohort

p=10.05 4218 edges; p = 1/5001 4083 edges; p = 1/5001 3942 edges; p = 1/5001 3836 edges; p = 1/5001
p=0.01 1614 edges; p = 1/5001 1585 edges; p = 1/5001 1495 edges; p = 1/5001 1355 edges; p = 1/5001
p = 0.001 473 edges; p = 1/5001 411 edges; p = 1/5001 333 edges; p = 1/5001 288 edges; p = 2/5001

nificantly correlated with median go RT, Rest Task
SSD, or SSRT (p values >0.13). Prefrontal Prefrontal
This pattern of results is interesting be- Motor Motor
cause, of the four behavioral variables Insula Insula
tested, the go response rate may be most Parietal Parietal
closely related to sustained attention. In Temporal Temporal
the sustained attention CPM’s training Occipital Occipital
set, sustained attention was measured . t'rlr;b'c . E"Tl:b'c
. . . erepellum erepellum
with d’, hit rate relative to false-alarm rate, ) )
. Subcortical Subcortical
on a continuous performance task. The . .
R Brainstem Brainstem
most comparable measures to hit and 5 5 T BB ELE W E 2 5 T S B T2 E W E
. . == J B = 2 = P = =2
false-alarm rates in the stop-signal task are 582 é 2E3 < 3 582¢ é 2E3 < 3
R % =8 8 O 9 8 £ K] - a o - 8 o 5
the go response rate and the failure-to- & g O § £ g & g O § g g

stop rate. However, because the SSD
was staircased so that each participant
achieved a stop rate of ~50%, d’ is not an
informative measure of performance in
this task. The go response rate is, there-
fore, the most closely related to d' and
may be the most straightforward measure
of sustained attention. It is also the only
measure to show trend-level improve-

Figure4.

—-329 edges T TN 329 edges

Differences in the number of edges between each pair of regions. The value in each cell was calculated by subtracting
the number of edges in the unmedicated network from the number of edges in the methylphenidate network. Networks defined
at an edge-selection threshold of p = 0.05 (Fig. 2, top row of circle plots) were used for this visualization.

High-attention overlap

Bl Low-attention overlap

ment in the methylphenidate group rel- 2501 250+

ative to the cqntrol group. It is .notable ~ 8 200] 200

that strength in the high-attention and & 3

low-attention networks, significantly o B %0 1501

modulated by methylphenidate, pre- £ 1001 1001

dicted the behavioral measure most im- a § 501 50

proved by the drug. m

DiSCUSSiOIl p <.001 p<.01 p<.05 0 p<.001 p<.01 p<.05
Individual differences in the ability to sus- 2507 2507

tain attention have been linked to large- x 8 2001 2001

scale functional connectivity networks _@ jﬂJ_J 150 1501

(Castellanos et al., 2009; Kessler et al., o g

2016; Rosenberg et al., 2016). However, T 2100 1007

the precise role that these networks play Q 2 501 50

in attention and their relationship to ] m = .

changes in attentional abilities are not yet p<.001  p<.01  p<.05 p<.001 p<.01  p<.05
known. Here we investigated the effects Methylphenidate > Control Control > Methylphenidate

of a pharmacological ADHD treatment,
methylphenidate, on whole-brain func-
tional connectivity as a way to clarify the
role these networks play in the ability to
maintain focus over time.

Suggesting that sustained-attention net-
work strength is malleable—and that
changes in network strength are related to improvements in atten-
tion—we found that healthy adults given methylphenidate showed
connectivity profiles more consistent with strong attentional abilities
than did control subjects. That is, individuals on methylphenidate
had higher high-attention and lower low-attention network strength
than unmedicated individuals. Although within-subject compari-
sons between on-methylphenidate and off-methylphenidate condi-

Figure 5.

Number of edges in methylphenidate and unmedicated networks that also appear in independently defined atten-
tion networks. Because methylphenidate improves attention, we expect overlap between the high-attention and methylpheni-
date networks and overlap between the low-attention and unmedicated networks. This pattern of results s robust to the particular
edge-selection threshold (p << 0.001,p < 0.01, p << 0.05) applied during network definition. P values associated with amount of
overlap can be found in Table 4.

tions would be the strongest test of this hypothesis, the current
results provide compelling evidence that modulations of attention
network strength underlie the attention-related benefits of
methylphenidate.

Previous research has shown that methylphenidate is effective in
improving attention in both healthy and impaired populations
(Goldman et al., 1998; Smith et al., 2000; Schachter et al., 2001;
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Table 4. P values associated with the degree of overlap between the attention and the methylphenidate-related networks”

High attention Low attention

Rest cohort Task cohort Rest cohort Task cohort
Significance threshold at edge selection  0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05
Methylphenidate > control network ~ 1.1e % <le 72 <o 2 43¢ 1% 4707 <172 >099  >099 >0.99 >099  >099 >0.99
Control > methylphenidate network ~ >099  >099  >099  0.73 >099  >099  77e® <le ™ <fe ™ 54e7® 170 7® 16

“Overlap was calculated from methylphenidate-related networks defined at each of three significance thresholds.
bSignificant overlap was expected; survived Bonferronis correction for 24 comparisons.

Sustained attention CPM
predictions from rest data

Sustained attention CPM
predictions from task data

e Methylphenidate

31 r=034 _ 31 r=059 group
=0.004 = -9 .
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Go response rate

Figure 6.

Go response rate

The sustained attention CPM significantly predicted the frequency with which participants correctly responded to go trials in the stop-signal task from connectivity matrices calculated

during restand task performance. Predictions from resting-state matrices were generated in the rest cohort (n = 72) and predictions from task matrices were generated in the task cohort (n = 83).

Faraone et al., 2004; Wood et al., 2014; Ilieva et al., 2015). In the
current sample, there was a trend toward more-frequent correct
responding on go trials of the stop-signal task in the methylpheni-
date group than in the control group. The lack of between-group
differences on other measures of stop-signal performance could be
due to a ceiling effect given that participants were healthy young
adults (Farr et al., 2014a). However, given the extensive literature on
attention-related benefits of methylphenidate, we can be confident
that participants in the methylphenidate group did receive a benefit
of the drug. Follow-up experiments with tasks that place heavier
burdens on sustained attention might be more sensitive to the ben-
efits of methylphenidate in healthy populations.

Remarkably, the sustained attention CPM, which was trained in
an independent dataset to predict attentional performance from
high-attention and low-attention network strength (Rosenberg et
al., 2016), predicted the go response rate in the current sample from
both task-based and resting-state connectivity. Confirming that suc-
cess was not driven exclusively by between-group differences, pre-
dictions of the sustained attention CPM were significant in the
control group alone. This result provides further evidence that the
sustained attention CPM generalizes out of sample, making it a ro-
bust neuromarker of sustained attention. It also demonstrates that
methylphenidate affects connectivity networks related to the behav-
ior it improves, suggesting a mechanism of action. Future work us-
ing CPM could explore whether methylphenidate also affects
networks related to other behavioral measures associated with atten-
tional performance, such as response speed and inhibitory control.

The significant overlap between the high-attention and
methylphenidate networks, and between the low-attention and un-
medicated networks, further supports the conclusion that methyl-
phenidate acts by modulating brain networks related to attention.
Beyond just the specific overlapping edges, the two sets of networks
show extraordinarily similar edge patterns, which is especially re-
markable considering that attention networks were defined using

CPM to predict performance on a sustained-attention task whereas
the methylphenidate and unmedicated networks were defined using
groupwise t tests with NBS correction in independent datasets. Both
“more successful” attention networks (the high-attention and meth-
ylphenidate networks) include relatively more prefrontal-occipital,
temporal-subcortical, and temporal-brainstem connections, and
connections between the cerebellum and the motor, parietal, tem-
poral, and occipital cortices. Both “less successful” networks (the
low-attention and unmedicated networks) include relatively more
connections between the prefrontal cortex and the subcortex and
cerebellum; within-prefrontal, intracerebellar, and temporal—
parietal connections; and connections between the cerebellum and
the brainstem and subcortex. The networks’ distributed anatomy
provides further evidence that large-scale networks support the abil-
ity to sustain attention (Langner and Eickhoff, 2013; Rosenbergetal.,
2015, 2016) and reinforces the value of whole-brain, data-driven
approaches in functional-connectivity analyses. The substantial, but
not complete, overlap between the attention-related and methyl-
phenidate-related networks also holds promise for future work that
aims to define maximally generalizable network models of sustained
attention or to identify a particular subset of edges that respond to
pharmacological or behavioral intervention.

In addition to providing further support for the sustained
attention CPM, the current results complement work on the
functional connectivity changes associated with methylphenidate
in several ways. We replicated effects observed previously (Farr et
al., 2014b), finding that connections between subcortical and
motor regions were more frequent in the methylphenidate net-
works, whereas connections between subcortical and prefrontal
regions were more frequent in the unmedicated networks. Our
results also agree with findings that methylphenidate strengthens
cerebellar—-motor connections (Konova et al., 2013), and weak-
ens cerebellar-limbic (Konova et al., 2013) and intraoccipital
connections (Sripada et al., 2013). We did not find other effects
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that have been observed previously, such as increased frontostria-
tal, frontocerebellar, and cerebellar—striatal connectivity with
methylphenidate (Rubia et al., 2011), but differences in the study
sample (healthy adults vs children diagnosed with ADHD) could
account for these discrepancies. Together with previous work,
our findings provide evidence that methylphenidate has wide-
spread effects on brain connectivity that may underlie its perfor-
mance benefits.

Despite the promising generalizability of the sustained atten-
tion CPM, our conclusions are limited by our dataset’s between-
subjects design and lack of placebo control. These would have
been ideal to include, but we were practically constrained by the
original study design. For several reasons, we do not believe that
this limitation affects our conclusions. First, a vast number of
studies have shown that methylphenidate enhances sustained at-
tention above and beyond placebo controls (for a recent review,
see Linssen et al., 2014), making it likely that our findings can be
attributed to methylphenidate. Accordingly, our design followed
other influential methylphenidate fMRI studies that used
between-subjects designs with matched control groups but with-
out placebo to maximize experimental power (Liddle et al., 2011;
Tomasietal., 2011). Second, a survey of the literature reveals that
expecting to receive methylphenidate but actually receiving pla-
cebo does not improve cognitive performance in healthy college
students (Looby and Earleywine, 2011), and that placebos for
ADHD medications do not produce significant effects in the be-
havior or cognition of elementary school-age children with
ADHD (Waschbusch et al., 2009). Instead, placebo effects appear
to influence the adults evaluating children with ADHD, high-
lighting the utility of objective assessment tools, such as our sus-
tained attention CPM here.

Thus, we propose that methylphenidate modulates the strength
of networks that predict sustained-attentional performance. Our re-
sult suggests a causal relationship between attention network
strength and attention function, and motivates exciting new avenues
of research. For example, it is possible that increasing high-attention
and decreasing low-attention network strength with other interven-
tions, such as real-time neurofeedback (Stoeckel et al., 2014), could
improve attentional abilities. More generally, the current findings
underscore the power of CPM for generating neuromarkers of traits
and behavior, and highlight the importance of probing the func-
tional roles and cross-dataset generalizability of these network-based
biomarkers.
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