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Abstract

We present a novel voxel-based connectivity approach for paired functional magnetic resonance imaging (fMRI) data
collected under two different conditions labeled the Coupled Intrinsic Connectivity Distribution (coupled-ICD). Our
proposed method jointly models both conditions to incorporate additional paired information into the connectivity metric.
Voxel-based connectivity holds promise as a clinical tool to characterize a wide range of neurological and psychiatric
diseases, and monitor their treatment. As such, examining paired connectivity data such as scans acquired pre- and post-
intervention is an important application for connectivity methodologically. When presented with data from paired
conditions, conventional voxel-based methods analyze each condition separately. However, summarizing each connection
separately can misrepresent patterns of changes in connectivity. We show that commonly used methods can underestimate
functional changes and subsequently introduce and evaluate our solution to this problem, the coupled-ICD metric, using
two studies: 1) healthy controls scanned awake and under anesthesia, and 2) cocaine-dependent subjects and healthy
controls scanned while being presented with relaxing or drug-related imagery cues. The coupled-ICD approach detected
differences between paired conditions in similar brain regions as the conventional approaches while also revealing
additional changes in regions not identified using conventional voxel-based connectivity analyses. Follow-up seed-based
analyses on data independent from the voxel-based results also showed connectivity differences between conditions in
regions detected by coupled-ICD. This approach of jointly analyzing paired resting-state scans provides a new and
important tool with many applications for clinical and basic neuroscience research.
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Introduction

Functional connectivity holds promise as a tool to detect
abnormal brain organization in clinical populations, and to
monitor functional changes in response to treatment [1]. When
monitoring treatments, exploratory analysis at a whole-brain level
with few or no a priori assumptions is often desired so as to
maximize the likelihood of observing any and all changes in
function (including potentially adverse changes). Conventional
task-based functional magnetic resonance imaging (fMRI) is often
inadequate for whole-brain functional monitoring because only a
few regions reliably activate above baseline for any given task, and
interactions between task performance and conditions can
confound serial measurements. Many functional connectivity
approaches such as [2–4] rely on regions of interests (ROIs) to
characterize the effects of drugs/treatment on connectivity.
However, these approaches can only examine regions that are a
priori hypothesized to show changes, and so potentially important
regions may not be examined due to limited a priori knowledge. As

such, whole-brain analysis methods designed for paired fMRI data
such as scans acquired pre- and post-intervention is an important
area of development for connectivity methodology.

Voxel-based measures of connectivity are emerging tools for
monitoring functional changes between conditions in whole-brain
studies [5–9]. These methods can be viewed as a generalization of
ROI-based approaches where each voxel is an ROI. Thus, every
region is directly examined. Nevertheless, using each voxel as an
ROI results in large connectivity matrices (with more than
10,000610,000 correlations at typical fMRI resolutions) that are
difficult to interpret and are problematic for statistical inferences.
To simplify, voxel-based metrics essentially work as compression
mechanisms, reducing all information about the connections to a
voxel into a few summary statistics. For example, the network
theory measure degree reduces a given row of the connectivity
matrix to a single number by counting the number of connections
above a correlation threshold [5,6,9], or by averaging correlations

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e93544



[5,8]. However, this compression comes at a price as spatial
information about specific connections to that voxel is lost.

This loss of information can cause additional problems in the
case of paired conditions such as pre- and post- treatment. Here,
the standard approach is to compute voxel–based metrics
separately for each condition and then perform statistical analysis
to compare the two. However, we observe that this approach can
be suboptimal as the compression into a summary statistic is
performed twice (once for each condition). If thresholds are
involved in creating this summary statistic, the difference in the
summary statistic is not always the same as the summary statistic of
a difference. Hence, in addition to losing spatial information as
stated above, information about how each connection changes due
to the treatment can be lost with current approaches.

In this work, we propose a method to take advantage of
additional information held by paired conditions where within-
subject differences across conditions are first computed and then a
single summary measure can be calculated for these differences.
The coupled Intrinsic Connectivity Distribution (coupled-ICD)
presented here extends the recently developed Intrinsic Connec-
tivity Distribution (ICD) method [7] and jointly analyzes each of
the paired conditions at the voxel level. ICD, and by extension
coupled-ICD, represent a generalization of the network-theory
measure degree [5,6,10] and model the change in degree as the
threshold used to calculate degree is increased. The ICD approach
was developed in order to eschew the need to choose an arbitrary
threshold to determine if two voxels are connected or not — a
weakness of previous approaches. The coupled-ICD approach
retains this advantage of examining the entire connectivity
spectrum without requiring the selection of an arbitrary threshold
to determine connectivity.

To assess our coupled-ICD measure, we used two data sets of
paired scans. The first consisted of healthy controls scanned awake
and under anesthesia, while the second consisted of cocaine-
dependent subjects and healthy controls scanned while presented
with relaxing and drug-related imagery cues. We show that
coupled-ICD has higher sensitivity than conventional approaches
for detecting differences between conditions. Finally, on a
separate, independent sub-sample of our data, we show that
regions detected by coupled-ICD are predictive of seed-based
differences in connectivity.

Methods

Ethics Statement
Data were from studies performed at Yale University School of

Medicine, New Haven, CT. All protocols were reviewed and
approved by Human Research Protection Program at Yale
University. Written informed consent was obtained. All scans
were obtained and analyzed at Yale University.

Theory
Voxel-based measures of functional connectivity [6–9,11] aim

to reduce large amounts of information about connectivity to a
voxel into a much smaller set of summary statistics. Typically,
these methods have their roots in graph theory [10], in which the
brain is treated as a ‘‘graph,’’ or network, and each voxel
represents a node in this graph. These nodes (or voxels) are
connected to each other by ‘‘edges,’’ or connections, based on the
similarity of their timecourses.

Measures of node centrality such as degree are the primary
metrics used for voxel-based connectivity. These measures can be
calculated from the distribution of correlations for any voxelx.
First, f (x,r) is defined as the distribution of the correlations (r) for

the timecourse at voxel x to the timecourse at every other voxel in
the brain and can be estimated by computing the histogram of
these correlations. Degree, based on a binary graph, can be
estimated as the integral of this distribution from any thresholdt to

1, or
Ð1

t
f (x,r)dr. Weighted degree measures such as weighted

Global Brain Connectivity (wGBC) [8] can be estimated as the
mean of this distribution or a distribution of transformed
correlations. In contrast, ICD models the corresponding survival
function tof (x,r). Each point on the survival function is simply
degree, based on a binary graph, evaluated at that particular
threshold t. The ICD approach is to parameterize the change in a
voxel’s degree as the threshold used to determine if two voxels are
connected is increased. Previously [7], we showed that a stretched
exponential decay with unknown variance parameter (a) and
shape parameter (b) was sufficient to model this survival function.
Modeling the survival function with a stretched exponential is
equivalent to modeling the underlying distribution as a Weibull

distribution: f (x,r,a,b)~
b
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)b), where xis the

spatial location of a voxel, r is a correlation between two
timecourses,(a) is the variance parameter, and (b) is the shape
parameter. Thus, ICD models the variance of the distribution of
correlations between a voxel and every other voxel in the brain.
No thresholds are needed to estimate the variance or model the
distribution.

We observe that the difference between the summary statistics
(degree, wGBC, or ICD) of two graphs may not be the same as a
summary of the difference between the graphs. Two examples are
shown in Figure 1A and 1B where comparing summary statistics of
two graphs can potentially either overestimate or underestimate a
change in paired conditions. The first example uses degree based
on a binary graph where one connection changes a small amount
going from just below the threshold (t~0:25) to just above the
threshold. This change causes degree for two nodes to increase in
the second condition even though the change in correlation was
relatively small. The second example uses degree based on a
weighted graph where, in the second condition, an equal amount
of connections increase in strength and decrease in strength
compared to the first condition. This changes results in no
difference in degree between the two conditions for the selected
node. Given that the standard approach is to compute voxel–
based metrics separately for each condition and then perform
statistical analysis to compare these two metrics (see for example,
[12]), we hypothesize that summarizing the difference between
two graphs may be a more powerful alternative approach.

The present approach, coupled-ICD, extends conventional
voxel-based connectivity in a critical way: the graph summarized
by coupled-ICD is a graph defined by differences in connectivity, not
connectivity itself. As such, coupled-ICD takes advantage of the
paired nature of the data by explicitly comparing the strength of
the same edge (the strength of an edge is the correlation between
the time courses of a pair of voxels) two conditions. Given a set of
paired data, coupled-ICD can be computed by repeatedly
calculating conventional seed connectivity maps treating each
voxel as a seed, and summarizing the difference between the seed
maps for each condition (see Figure 2). First, for any voxel x, the
correlation between the timecourse at voxel x to the timecourse at
every other voxel in the gray matter is calculated for each
condition in the paired data. These correlation maps are then
subtracted from one another. Coupled-ICD then summarizes this
map of differences in the same way that ICD (or degree) summarizes
a map of connections to a voxel. First, for each voxel, a
distribution of these differences is estimated with a histogram.

Coupled Intrinsic Connectivity Distribution
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Second, this distribution is modeled as a Wiebull distribution,
which corresponds to modeling the survival function of the
histogram as a stretched exponential.

The coupled-ICD approach can be used to model increases in
connectivity, decreases in connectivity, or the magnitude (absolute
value) of the changes in connectivity. In all cases, a larger a
parameter indicates that the distribution has a larger variance,
thus indicating that a larger number of connections exhibit a
strong change in correlations between the two conditions. Group
comparisons can be performed by comparing the a parameters
using standard statistical testing.

Subjects
Coupled-ICD can be used as an exploratory tool to help select

regions that are most likely to show significant differences upon
further analysis in the cases of rs-fMRI data arising from two
different conditions. We evaluate this aspect of coupled-ICD using
data set 1. Additionally, if two separate groups have paired
condition data, it is possible to use coupled-ICD directly to
estimate regions of statistically significant connectivity differences.
We evaluate this aspect of coupled-ICD using data set 2.

Data Set 1. The first data set consisted of 14 healthy subjects
and aimed to examine the influence of anesthesia on intrinsic
functional connectivity. Each subject was scanned at rest for nine

Figure 1. Examples of how conventional approaches that separately summarize each condition of a pair could misrepresent
patterns of changes in connectivity. A) When a binary graph is used, changes in correlation near the threshold value (threshold t~0:25) can lead
to an over/under-estimation of connectivity changes. In this example, one edge increases its correlation by 0.02 in between conditions 1 and 2, which
leads an increase in degree for condition 2. However, this increase in correlation and degree is likely not meaningful. B) When a weighted graph is
used, increases and decreases in connectivity between conditions could cancel each other out. In this example, half of a node’s edges increase their
correlation while half of its edges decrease their correlation in condition 2 compared to condition 1. When all edges are averaged together, no
change between the conditions is detected, despite that a change is clearly present.
doi:10.1371/journal.pone.0093544.g001

Figure 2. Flow chart describing coupled-ICD. For data consisting of paired conditions, coupled-ICD jointly analyzes both conditions and then
creates a summary of the difference in connectivity between conditions for each voxel. First, a ‘‘seed’’ connectivity map is created for a voxel (shown
as the blue square through the flow chart) in each condition. The resulting ‘‘seed’’ maps are then subtracted and a histogram of the differences is
computed. The survival function of the distribution of the difference (labeled as coupled-ICD curve) is calculated and modeled with a stretched
exponential. This process is repeated for each voxel in the gray matter. The final output is an image where each voxel represents a summary of the
difference between two ‘‘seed’’ maps using that voxel as the seed region.
doi:10.1371/journal.pone.0093544.g002

Coupled Intrinsic Connectivity Distribution
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6-minute runs. In the first three (pre-anesthesia) and last three
(post-anesthesia) scans, pure oxygen was administrated to the
subjects. In the second three (anesthesia) scans, sevoflurane (0.5
MAC) was added to the pure oxygen. A 10-minute gap was
introduced between experimental sessions to allow for end-tidal
sevoflurane concentration to reach a steady-state and to allow for
anesthetic washout, respectively. During the entire study, subjects
were asked to lie in the scanner with their eyes closed and to
refrain from performing any goal-oriented mental activity. Only
the first two conditions were analyzed. Full details about this data
set and previous results can be found elsewhere [13].

Data Set 2. The second data set consisted of 28 cocaine-
dependent subjects and 38 healthy control subjects and aimed to
examine the influence of cue state and diagnostic group on brain
activity. Subjects performed four fMRI scans while listening to
imagery scripts of either neutral relaxing cues or drug-related cues
(two scans of each). These imagery scripts were custom tailored to
each subject and no script was presented twice. Each scan lasted 5
minutes and consisted of three blocks including a 1.5-minute quiet
baseline period, a 2.5-minute imagery period, and a 1-minute
quiet recovery period. For connectivity analysis, only the large,
continuous 2.5-minute imagery period was used. As only the
imagery period was analyzed, task effects were not regressed in the
presented results. Results with task effects regressed are visually
similar and, for simplicity, not presented. Complete details about
the sample and imagery script design can be found elsewhere
[14,15]. This data set was added to the study because it consists of
two groups with multiple conditions, which allows for the
comparison of coupled-ICD parameters using standard statistical
testing (see the Statistical Analysis section below).

Imaging Parameters
Data Set 1. Imaging was performed using a 3T Siemens

(Erlangen, Germany) Trio MR system. After a first localizing scan,
33 axial slices (slice thickness 4 mm, no gap, FoV = 256 mm,
matrix size 2566256) parallel to the AC-PC line were acquired
using a T1-weighted sequence (TR = 300 ms, TE = 2.43 ms,
FoV = 256 mm, matrix size 2566256, flip angle 60u). Functional
imaging volumes were collected in the same slice position as the
preceding T1-weighted data. For each experimental condition,
three functional runs were acquired using a T2*-sensitive gradient-
recalled, single-shot echo-planar imaging pulse sequence
(TR = 2 s, TE = 31 ms, FoV = 256 mm, flip angle 90u, matrix
size 64664). Each volume consisted of 33 slices parallel to the
bicommissural plane (slice thickness 4 mm, no gap), and each
functional run comprised 210 volumes. High-resolution anatom-
ical images were acquired using a T1-weighted sagittal gradient-
echo (MPRAGE) sequence (176 contiguous sagittal slices, slice
thickness 1 mm, matrix size 2566256, FoV = 256 mm
TR = 2530 ms, TE = 3.34 ms, flip angle = 7u).

Data Set 2. Imaging was performed using a 3T Siemens
(Erlangen, Germany) Trio MR system. After a first localizing scan,
32 axial slices (slice thickness 4 mm, no gap, FoV = 220 mm,
matrix size 2566256) parallel to the AC-PC line were acquired
using a T1-weighted sequence (TR = 300 ms, TE = 2.5 ms,
FoV = 220 mm, matrix size 2566256, flip angle 60u). Functional
imaging volumes were collected in the same slice position as the
preceding T1-weighted data. For each experimental condition,
three functional runs were acquired using a T2*-sensitive gradient-
recalled, single-shot echo-planar imaging pulse sequence
(TR = 2 s, TE = 25 ms, FoV = 220 mm, flip angle 85u, matrix
size 64664). Each volume consisted of 32 slices parallel to the
bicommissural plane (slice thickness 4 mm, no gap), and each
functional run comprised 180 volumes. High-resolution anatom-

ical images were acquired using a T1-weighted sagittal gradient-
echo (MPRAGE) sequence (176 contiguous sagittal slices, slice
thickness 1 mm, matrix size 2566256, FoV = 256 mm
TR = 2530 ms, TE = 3.66 ms, flip angle = 7u).

Preprocessing
Images were slice-time corrected using sinc interpolation and

motion corrected using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm5/). All further analysis was performed using Bio-
Image Suite [16]. Several covariates of no interest were regressed
from the data including linear and quadratic drift, six rigid-body
motion parameters, mean cerebrospinal fluid (CSF) signal, and
mean white matter signal. The global signal was not removed. The
white matter and CSF areas were defined on a template brain
[17], eroded to ensure only white matter or CSF signal would be
included, and warped to individual subject space using a series of
transformations described below. Finally, the data were temporally
smoothed with a zero mean unit variance Gaussian filter
(approximate cutoff frequency = 0.12 Hz). For each subject,
connectivity was estimated for each voxel in each subject’s
individual space. First, a gray-matter mask was applied to the
data so that only voxels in the gray matter were used in the
calculation. The gray-matter mask was defined on a template
brain [17], dilated to ensure full coverage of the gray matter, and
warped to individual subject space using a series of transformations
described below.

Common space registration. To facilitate group statistics,
all single-subject results (ICD wGBC, coupled-ICD, and seed
maps) were first warped to a common template space through the
concatenation of a series of linear and non-linear registrations and
spatially smoothed with a 6 mm Gaussian filter. The functional
series were linearly registered to the T1 axial-oblique (2D
anatomical) image. The 2D anatomical image was linearly
registered to the MPRAGE (3D anatomical) image. The 3D
anatomical image was non-linearly registered to the template
brain. All transformation pairs were calculated independently and
combined into a single transform between single-subject space and
common space, reducing interpolation error. All transformations
were estimated using the intensity-only component of the method
implemented in BioImage Suite [18].

Functional connectivity estimation
Division of data sets. As coupled-ICD (along with most

voxel-based metrics) compresses spatial information about changes
in connectivity to a single parameter for any voxel, we performed
standard seed-based analysis with seeds derived from regions
detected by coupled-ICD to explore which specific connections are
responsible for the change in connectivity. This follow-up seed
analysis provides additional, though not direct, evidence that
differences detected reflect ‘‘true’’ changes in connectivity. In
order to show that regions detected by coupled-ICD are predictive
of changes with seed-based methods, the voxel-based analysis and
follow-up seed-based analysis were performed on separate,
independent subsets of the data.

All data was split into two groups for each data set. One group
was used for the voxel-based analysis. The other group was used
for follow-up seed analysis on regions detected by coupled-ICD.
For data set 1, given the limited sample of subjects (n = 14) but
large amount of imaging data per condition (approximately 15
minutes), the data set was split into two groups by runs. For each
subject, two runs for each condition were randomly chosen for
voxel-based analysis. The remaining run was left out for follow-up
seed analysis. In contrast, for data set 2, which had a larger sample
of subjects (38 controls and 28 cocaine-dependent individuals) but

Coupled Intrinsic Connectivity Distribution
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less imaging data per condition (approximately 5 minutes), the
data was split into two groups of subjects. Fourteen cocaine-
dependent subjects and 19 healthy controls were randomly chosen
for voxel-based analysis. The remaining subjects were used for
seed-based analysis. Runs were temporally concatenated when
there were multiple runs for a condition. Additionally the data
reserved for seed analysis was also used to replicate the primary
coupled-ICD analysis. This data is presented in supplemental
material (see also Figure S1, S2, S3, S4, S5, S6).

ICD and wGBC estimation. The timecourse for voxel x was
correlated with the timecourse for every other voxel in the gray
matter. For each voxel, a distribution of connection strength was
estimated for the positive correlation coefficients using a 100-bin
histogram. ICD was used to model this distribution as described in
[7]. First, the histogram was converted to the corresponding
survival function and this survival function was modeled with a
stretched exponential. This results in two summary statistics for
each voxel reflecting that voxel’s connectivity to the rest of the
brain; the alpha parameter was used in the group comparisons.
The wGBC maps were estimated as the mean of this histogram
(i.e., the sum of all correlations to a voxel divided by the total
number of correlations). Both the ICD and the wGBC maps for
each paired condition were then subtracted from each other,
resulting in a single map per subject describing the difference in
connectivity between conditions. ICD and wGBC were estimated
in single subject space and then warped to common space.

Matrix connectivity. As coupled-ICD summarizes the dif-
ferences in correlations (edges) rather than (node-based) graph
theory measures, we included a non-voxel-based approach that
divides the brain into 278 distinct regions and interrogates
connectivity between these regions [19]. For each subject, the
Shen functional atlas [20,21] (available for download at http://
www.nitrc.org/projects/bioimagesuite/) was warped to individual
space and the pairwise correlation coefficient between the
timecourses of each possible pair of nodes was computed. The
correlations were transformed to Z scores with the Fisher
transformation, resulting in a 2786278 symmetric connectivity
matrix for each subject. These matrix were then used in second
level group analysis.

Coupled-ICD analysis. Similar to the ICD and wGBC
estimations described above, the timecourse for voxel x was
correlated with the timecourse for every other voxel in the gray
matter. As coupled-ICD operates on paired data, this process was
performed on both conditions resulting in two seed connectivity
maps with voxel x as the seed. These maps are then subtracted. A
distribution of the differences in connection strength was estimated
for the absolute value of the differences using a 200-bin histogram.
A larger number of bins was used to keep the bin width the same
as the ICD analysis while accommodating the wider range of
possible values (difference in correlations has a theoretical range of
[22,2] while correlation has a range of [21,1]). We chose to
model increases and decreases in connectivity separately for data
set 1. For this case, the distribution of differences in correlation
was split into two halves and the positive and negative halves of the
distribution were converted to separate survival curves for
coupled-ICD analysis. For data set 2, we chose to model the
overall change in connectivity to highlight regions of the brain that
showed large differences between the two conditions. The absolute
value of the distribution of differences in correlation was taken and
converted to a survival function. As described above, these survival
curves were modeled with a stretched exponential reducing the
functional connectivity metric for a voxel under two conditions
into two summary statistics (the alpha and beta parameters
characterizing the survival curve). The alpha parameter was used

for group comparisons and represents a summary of the difference
in a voxel’s connectivity between two conditions. As both
conditions were acquired during the same imaging session, the
two conditions for each subject were already registered. Thus,
coupled-ICD was estimated in single subject space and then
warped to common space.

Seed-based connectivity analysis. Follow-up seed-based
analyses (similar to [6,22,23]) were performed on sample regions
detected using coupled-ICD. For data set 1, two seeds were placed
in the right parietal lobe (BA 39) and left lateral prefrontal cortex
(BA 10). For data set 2, a seed was placed in left putamen based on
voxels showing significant differences (p,0.05 corrected) between
controls and cocaine-dependent subjects.

All seeds were defined on the MNI reference brain and
transformed back (via the inverse of the transforms described
below) into individual subject space. The timecourse of the
reference region in a given subject was then computed as the
average timecourse across all voxels in the reference region. This
timecourse was correlated with the timecourse for every other
voxel in the gray matter to create a map of r-values, reflecting
ROI-to-whole-brain connectivity. These r-values were trans-
formed to z-values using Fisher’s transform, yielding one map
for each subject representing the strength of correlation to the seed
region.

Statistical analysis. Highly connected regions for single-
group results were detected using a modified version of the Top
Percent method [8]. This method was developed for connectivity
analysis of a single group where the null hypothesis is not obvious,
and has been shown to be a reliable surrogate for control for false
positives. For this method, the group average was divided by the
group standard deviation for each voxel resulting in a measure of
within-group effect size. Any voxels in the top 15 percent of effect
size were considered highly connected. A cluster threshold of 50
voxels was used for visualization. This measure highlights voxels
that are both highly connected to the rest of the brain and highly
consistent among the sample population. This method was used
for the coupled-ICD results for data set 1.

Between-group differences for coupled-ICD results from data
set 2, conventional measures, and matrix data were identified
using t-tests. As the ICD (and coupled-ICD) parameters are found
via regression analysis, we justify the use of parametric testing
because the errors from the regression analysis are likely normally
distributed and independent give reasonably large sample size
used to estimate these parameters. Significance was assessed at a
p,0.05 level corrected for multiple comparisons. Multiple
comparisons were accounted for using AFNI’s AlphaSim program
for imaging data and false discovery rate for the matrix data. All
results were also localized in terms of the Brodmann areas (BA)
identified using BioImage Suite’s digital Brodmann atlas.

Motion analysis. As group differences in motion have been
shown to confound functional connectivity results, average frame-
to-frame displacement was calculated for each group [24]. There
was no significant group difference (p = 0.54) in motion for data set
1 between the awake and anesthesia runs. There were no
significant group differences in motion between healthy controls
and cocaine-dependent subjects for data set 2 for either the
relaxing imagery (p = 0.57) or the drug-related imagery (p = 0.45)
conditions.

Group comparisons:. In the Results section, we presented
two examples of the coupled-ICD approach. For data set 1, we
wished to explore the effect of anesthesia on brain connectivity and
wanted to characterize all changes in connectivity due to
condition. We decided to model the increases and decreases
separately in order capture the directional main effects of

Coupled Intrinsic Connectivity Distribution
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anesthesia. This example highlights how coupled-ICD can be used
to define reduce the search space to focal seed regions for further
independent analysis. For data set 2, we expected that both drug
dependent individuals and control subjects would show connec-
tivity changes as a function of condition. However, we were not
explicitly interested in this change but rather how drug dependent
subjects differed from controls in their response to drug cues. Thus
our primary interest is the interaction, not directional main effects.
As such, we examined the absolute value to detect any changes in
connectivity regardless of direction. This is similar to looking the
F-statistic to detect significant interaction. This example highlights
how coupled-ICD can be used as a direct statistical method for
quantifying group connectivity differences.

Results

Exploration of increased and decreased connectivity
under anesthesia

Using data set 1, we explored how coupled-ICD detected
changes in connectivity due to anesthesia. Specifically, we
explored which regions showed the largest increases and decreases
in connectivity when the anesthesia condition was compared to the
awake condition by observing which regions constituted the top 15
perfect of the effect size of the coupled-ICD alpha parameter. This
approach effectively creates ‘‘hub’’ maps of increased and
decreased connectivity (shown in Figure 3A and 3B, respectively).
Coupled-ICD detected several regions of large increased connec-
tivity during the anesthetized condition relative to the awake

condition. These regions include the supplementary motor area
(SMA)/anterior cingulate cortex (ACC), lateral parietal lobe,
posterior cingulate cortex (PCC)/ precuneus, and visual cortex.
Sparse increases were also found in the lateral frontal lobe.
Regions of large decreased connectivity were detected in the dorsal
lateral prefrontal cortex, insular cortex, medial prefrontal cortex,
anterior and posterior cingulate cortex, and lateral parietal lobe.

Notably, certain areas showed both large increases and
decreases in connectivity as measured by coupled-ICD. These
areas were mostly in the PCC/precuneus and lateral parietal lobe.
Standard analysis with either wGBC or ICD (shown in Figure 3C
and 3D, respectively) —where each condition is summarized
separately—can only specify if an area shows either increased or
decreased connectivity and cannot specify if an area shows both
increased and decreased connectivity. While the coupled-ICD and
the conventional approaches (wGBC, ICD, and matrix connec-
tivity) detect similar regions of altered connectivity (albeit with
different overlay methods), coupled-ICD is the only voxel-based
method that can highlight regions where connectivity changes in
both directions.

To further explore the changes in areas of both increased and
decreased connectivity detected by coupled-ICD, a follow-up seed-
based analysis was performed using the right parietal region (MNI
coordinates: 51, 253, 30, volume = 3000 mm3). This analysis was
performed on a set of images independent from the runs used to
generate the coupled-ICD results. As expected from the coupled-
ICD results, this seed region showed both significant (p,0.05,
corrected) increased and decreased connectivity (Figure 4A).

Figure 3. Comparison of coupled-ICD and conventional approaches for detecting connectivity changes due to anesthesia. Regions of
large A) increased connectivity and B) decreased connectivity under anesthesia detected by coupled-ICD and thresholded using the Top Percent
method. For some regions, coupled-ICD was able to detect regions with both increased and decreased connectivity. One of these areas (the right
parietal lobe; black circle) was used for further analysis. Regions of significant change in connectivity detected by conventional voxel-based
approaches are shown in C) ICD and D) wGBC. While a general correspondence was observed between all methods, the coupled-ICD results suggest
a decrease in connectivity for the left frontal lobe (black circle) while the conventional approaches suggest an increase in connectivity. This region
was selected for further analysis. While the conventional voxel-based approaches, C) ICD and D) wGBC, suggested more focal changes in connectivity,
E) matrix connectivity and coupled-ICD suggest more widespread changes due to anesthesia. Only edges that were significantly difference at p,0.05
with FDR correction are shown. The size of the node is proportional to the number of significantly different edges touching that node such that a
larger node has more significantly different edges.
doi:10.1371/journal.pone.0093544.g003
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Increased connectivity was observed to the bilateral temporal lobes
and to the left ventral orbitofrontal cortex. Decreased connectivity
to the thalamus was also observed.

Both conventional voxel-based methods detected only regions of
increased connectivity (Figure 3C and 3D). The coupled-ICD and
matrix connectivity (Figure 3E) results suggest the presence of both
increases and decreases in connectivity for the anesthesia
condition. Additionally the results from the voxel-based methods
suggests largely focal changes in connectivity; whereas, the
coupled-ICD and matrix connectivity results are wide spread
throughout the cortex.

While a general agreement was observed between all methods,
for a region in the left frontal lobe/insular cortex, conventional
approaches indicated an increase in connectivity while coupled-
ICD indicated a decrease in connectivity for the anesthesia

condition. We further investigated this region using a seed
centered in the left frontal lobe (MNI: 233, 49, 13, volu-
me = 1811 mm3). The seed analysis revealed that, during the
anesthesia condition, this region showed increased connectivity to
the bilateral parietal lobe and showed decreased connectivity to
the thalamus (Figure 4B). This result suggests that, in some cases,
conventional approaches and coupled-ICD may be sensitive to
different aspects of changes in connectivity.

Relaxing versus Drug-Related Imagery
The performance of coupled-ICD was additionally explored

with a second data set contrasting two groups of subjects—healthy
controls (HC) and cocaine-dependent (CD) subjects—under
paired acquisition conditions (relaxing or drug-related imagery).
As the comparison between drug-dependent and control subjects

Figure 4. Seed-based connectivity results using seeds detected by coupled-ICD. A) Several regions of the brain displayed evidence for
both increased and decreased connectivity during the anesthesia state as detected by coupled-ICD. A follow-up seed-based analysis on independent
data for one of these regions (the right parietal lobe; green region) revealed both significant (p,0.05 corrected) increases and decreases in
connectivity to this region, echoing the coupled-ICD results. B) For some regions of the brain, coupled-ICD and conventional approaches showed
seemingly conflicting results, with coupled-ICD suggesting decreased connectivity while conventional approaches suggest increased connectivity
due to anesthesia. Seed connectivity for one of these regions (the left frontal lobe; green region) revealed both significant (p,0.05 corrected)
increased and decreased connectivity, demonstrating that the different approaches may be sensitive to different aspects of changes in connectivity.
doi:10.1371/journal.pone.0093544.g004
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involves contrasting a metric (coupled-ICD) that already measures
the difference between two conditions, this result can be
interpreted in a similar manner to the interaction term of a classic
262 two-way ANOVA. Coupled-ICD detected widespread
significant (p,0.05, corrected) interactions between condition
and group (Figure 5A). These regions included the PCC/
precuneus, bilateral angular gyrus, bilateral insular cortex,
bilateral putamen, SMA/ACC, and regions in the medial and
lateral prefrontal cortex. The interactions detected by coupled-
ICD were visually compared with interactions detected by the
conventional voxel-based approaches (ICD and wGBC) and the
matrix connectivity approach (Figure 5B-D). ICD detected
significant interactions in the ACC and precuneus. WGBC
detected significant interaction in the right lateral occipital lobe.
Matrix connectivity detected widespread condition X group
interaction with the largest effect being seen in lateral frontal
regions. The regions detected by the conventional approaches
(ICD, wGBC, and matrix connectivity) were also detected by
coupled-ICD. The equivalent of simple main effects for each
group is shown in supplemental material (Figure S7).

To further investigate the differences detected by the coupled-
ICD approach, a follow-up seed-based analysis was performed
using a seed defined in the left putamen (MNI: 223, 10, 22,
volume = 655 mm3) where significant between-group differences
were found using coupled-ICD. The left putamen was chosen as a
seed region due to the substantial literature (e.g., [25] [15])
implicating this region in drug addiction. Significant (p,0.05,
corrected) interactions between group and condition were
observed in the bilateral caudate and nucleus accumbens
(Figure 6).

Discussion

We present a novel method, coupled-ICD, for analyzing
differences in functional connectivity at the voxel level for paired
data. Current approaches to voxel-based measures of functional
connectivity generally compress information about the connec-
tions to a voxel into a few summary statistics. Applying
conventional methods to data with paired conditions where each
condition is summarized separately can be suboptimal, as
separately summarizing each condition of a pair can mischarac-
terize important changes in connectivity (see Figure 1). Thus, in
order to maximize the detection power of connectivity in resting-
state fMRI (rs-fMRI), each condition should not be analyzed
separately. Our solution, coupled-ICD, jointly analyzes each
condition by modeling the difference of the connectivity patterns
of two paired conditions for a subject. We show that coupled-ICD
can detect additional regions of difference between two paired
conditions. Standard seed-based analyses performed on data
independent from the coupled-ICD results show that the regions
detected by coupled-ICD show significant differences in connec-
tivity.

Voxel-based metrics can be used as a data-driven way to define
seed regions for ROI-based analysis [6,23,26]. However, voxel-
based approaches and ROI-based approaches can often produce
seemingly conflicting results—for example, voxel-based results
may suggest an increase in connectivity for a region while follow-
up seed analysis with the region may show decreases in
connectivity to the region. This discrepancy arises because the
two approaches are fundamentally different. In the ROI-based
approach, paired information about which connections have
changed is preserved as each connection is directly compared to
the same connection under different conditions. In previous voxel-

Figure 5. Comparison of coupled-ICD and conventional approaches for detecting group-by-condition interaction for cocaine-
dependent subjects (CD) and healthy controls (HC). As the comparison between CD and HC subjects involves contrasting a metric (coupled-
ICD) that already measures the difference between two conditions, this result can be interpreted in a similar manner to the interaction term of a
classic 262 two-way ANOVA. A) Coupled-ICD detected more widespread significant interactions than the two conventional approaches, B) ICD and C)
wGBC. D) ROI-based matrix connectivity method also detects widespread interaction between group and condition provide support that the
coupled-ICD results are not simply artifacts. Only edges that were significantly difference at p,0.05 with FDR correction are shown. The size of the
node is proportional to the number of significantly different edges touching that node. A larger node has more significantly different edges.
doi:10.1371/journal.pone.0093544.g005
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based approaches, this paired information is lost. Because
conventional voxel-based approaches compare summary metrics
of the connections, only the overall strength of connections to any
given voxel is compared. Coupled-ICD differs from other voxel-
based approaches in that it directly compares each connection
under two conditions (similar to ROI-based approaches) and then
summarizes these differences. This approach provides a direct link
between coupled-ICD and any subsequent ROI-based follow-up
analyses. This direct link does not always exist with conventional
methods that inherently compare nodes instead of edges.

Voxel-based approaches to rs-fMRI can be problematic due to
the large number of nodes and edges that must be kept in memory.
Thus, most studies when presented with paired data analyze each
condition separately. While approaches for comparing edges using
ROI-level graphs have been developed [19,27,28], graphs at the
voxel level become difficult to analyze due to memory constraints
and multiple comparison issues with groups of 10 or more subjects.
However, for the special case of paired scans, only two graphs
need to be analyzed simultaneously, reducing the complexity of
this problem. This simplification allows coupled-ICD to mimic
these ROI-based approaches and compare differences in edges
themselves, not differences in a summary statistic of edges. Thus,
with the coupled-ICD approach, edges that increase in connec-
tivity and edges that decrease in connectivity can be analyzed
separately allowing for the detections of regions showing increased
and decreased connectivity (as shown in data set 1). The results
from the coupled-ICD approach more closely resemble the matrix
connectivity (ROI-to-ROI) results than the conventional voxel-

based results, further highlighting the similarity between coupled-
ICD and ROI approaches.

Coupled-ICD’s main value is as a first-pass, screening method
to identify brain regions that could be important for follow-up
seed-to-whole brain analyses and/or used to test specific hypoth-
eses. As coupled-ICD is an exploratory screening method,
increased sensitivity is more essential than increased specificity.
Even though seed-to-whole brain connectivity remains the
primary method to test for changes in connectivity to a specific
region, only a few, select regions, based on a priori information,
can be tested with adequate power. If a region is not identified in
an exploratory analysis, important and novel findings may be
missed. This could create a bias in the literature where subtle, but
complex changes are under reported (Lieberman and Cunning-
ham, 2009). Thus, exploratory methods, such as coupled-ICD,
provide value to screen for potential seed regions and can be used
for further analysis.

Our new coupled-ICD approach can be used to better quantify
differences between paired conditions, which we demonstrate
using two data sets. For the first data set, comparisons between
subjects under awake and anesthetized conditions using coupled-
ICD revealed widespread differences in the medial frontal lobe,
SMA, ACC, thalamus, and visual cortex (see Figure 3). Many of
these regions are consistent with previous analysis of this data
[5,13]. However, neither of these previous analyses detected the
connectivity changes in the lateral frontal lobe that were revealed
coupled-ICD, an approach specifically designed for analyzing
paired data. This region was not a priori hypothesized to show
changes under anesthesia and thus was not examined with ROI-
based approaches [13]. Similarly, this region was not detected by
conventional degree analysis [5]. However, the coupled-ICD
approach showed strong evidence of large connectivity differences
for this regions.

For the second data set, we found significant differences in the
PCC, bilateral angular gyrus, bilateral insular cortex, bilateral
putamen, medial prefrontal/ACC, and visual-processing areas
(Figure 5). These findings support many previous studies
implicating the putamen [15,29], insula [15,25], ACC [15,30],
and prefrontal regions [29] in cocaine addiction. An example
follow-up seed-based analysis using a seed in the left putamen
revealed that the coupled-ICD differences in the left putamen are
mostly due to differences in connectivity to the limbic lobe
(Figure 6). Together, the coupled-ICD results and the follow-up
seed analysis suggest a disruption of corticostriatal-limbic connec-
tivity in the presence of drug cues for cocaine-dependent subjects.

Although coupled-ICD gains additional paired information by
jointly analyzing two conditions, it is currently limited to the
special case of only two paired conditions. In experiments that do
not use paired conditions, conventional approaches such as ICD
remain the more appropriate choice. Further, even if more than
two paired conditions are used, coupled-ICD can only jointly
analyze two conditions at a time. Future work could involve
generalizing coupled-ICD to any number of conditions. Finally,
while there is no significant difference in motion between groups
for either data set, confounds related to head movement may still
exist.

Numerous clinical applications could benefit from measuring
changes in the functional organization of the brain at the voxel
level, yet the translational technology for detecting changes in
connectivity remains elusive. We present a method for exploratory
analysis of paired conditions to detect regions that differ in their
connectivity patterns between conditions. This method, coupled-
ICD, jointly examines the connections to a voxel across two
conditions instead of investigating each condition separately as in

Figure 6. Follow-up seed-based connectivity results using a
seed detected by coupled-ICD. A follow-up, seed-based connectiv-
ity analysis was performed using a region in the left putamen detected
by coupled-ICD but not by conventional ICD and degree analysis. This
region shows significant group interaction (p,0.05, corrected) in the
caudate and nucleus accumbens. The subjects analyzed in the seed
analysis were not used in the voxel-based analysis, providing additional
evidence of coupled-ICD robustness and utility. The green region shows
the location of the seed ROI.
doi:10.1371/journal.pone.0093544.g006
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conventional voxel-based network approaches. Using two data
sets, we show that coupled-ICD detected differences between
paired conditions that were not observed with conventional
approaches, suggesting that conventional approaches can under-
estimate the differences between paired conditions. Using inde-
pendent data, follow-up seed-based analyses using these regions as
seed ROIs provided additional evidence that these regions
exhibited changes in connectivity as a function of experimental
condition. Consequently, coupled-ICD has promise as a method
for assessing changes in functional connectivity pre- and post-
treatment and fills an important void not currently covered by
conventional approaches.

Supporting Information

Figure S1 Original results for coupled-ICD increases in the
anesthesia data set presented with additional slices.
(TIF)

Figure S2 Replication results for coupled-ICD increases in the
anesthesia data set presented with additional slices.
(TIF)

Figure S3 Original results for coupled-ICD decreases in the
anesthesia data set presented with additional slices.
(TIF)

Figure S4 Replication results for coupled-ICD decreases in the
anesthesia data set presented with additional slices.
(TIF)

Figure S5 Original results for coupled-ICD in the cocaine-
dependence data set presented with additional slices (p,0.05,
corrected).
(TIF)

Figure S6 Replication results for coupled-ICD in the cocaine-
dependence data set presented with additional slices (p,0.05,
corrected).
(TIF)

Figure S7 Simple main effect for relaxing versus drug related
imagery. The simple main effects of condition for the cocaine
dependent subjects and healthy controls are shown for A) coupled-
ICD, B) ICD, and C) wGBC. All methods indicate a larger change
in connectivity for the dependent subject due to condition than for
the control subjects. These changes in the dependent subjects are
likely responsible for the significant interactions in the main text.
(TIF)
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