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A B S T R A C T

Naturalistic viewing paradigms such as movies have been shown to reduce participant head motion and improve
arousal during fMRI scanning relative to task-free rest, and have been used to study both functional connectivity
and stimulus-evoked BOLD-signal changes. These task-based hemodynamic changes are synchronized across
subjects and involve large areas of the cortex, and it is unclear whether individual differences in functional
connectivity are enhanced or diminished under such naturalistic conditions. This work first aims to characterize
variability in BOLD-signal based functional connectivity (FC) across 2 distinct movie conditions and eyes-open
rest (n=31 healthy adults, 2 scan sessions each). We found that movies have higher within- and between-subject
correlations in cluster-wise FC relative to rest. The anatomical distribution of inter-individual variability was
similar across conditions, with higher variability occurring at the lateral prefrontal lobes and temporoparietal
junctions. Second, we used an unsupervised test-retest matching algorithm that identifies individual subjects
from within a group based on FC patterns, quantifying the accuracy of the algorithm across the three conditions.
The movies and resting state all enabled identification of individual subjects based on FC matrices, with
accuracies between 61% and 100%. Overall, pairings involving movies outperformed rest, and the social, faster-
paced movie attained 100% accuracy. When the parcellation resolution, scan duration, and number of edges
used were increased, accuracies improved across conditions, and the pattern of movies > rest was preserved.
These results suggest that using dynamic stimuli such as movies enhances the detection of FC patterns that are
unique at the individual level.

1. Introduction

As psychiatric research has shifted towards a dimensional con-
ceptualization of symptoms and behaviors (Insel et al., 2010), neuroi-
maging has expanded to include brain-based characterization at the
individual level (Arbabshirani et al., 2013). Despite the reliability of
BOLD-signal based functional connectivity (FC) patterns across in-
dividuals and testing sessions (Damoiseaux et al., 2006; O'Connor
et al., 2016; Shehzad et al., 2009; Yeo and Krienen et al., 2011; Zuo
et al., 2010), FC relationships have also been shown to capture
significant inter-individual variability, generating optimism for their
eventual use as biomarkers of mental illness (Finn and Shen et al.,
2015; Gordon et al., 2017; Rosenberg et al., 2016; Shen et al., 2017).
Recent work has begun to characterize the spatial and state-based
aspects of individual differences in FC. The current study tests whether

individually unique patterns of FC can be detected when the brain
engages in the complex, dynamic processing that occurs when watching
movies. We also examine multiple aspects of FC variability to better
understand what factors might contribute to the detection of indivi-
dually distinct FC patterns under naturalistic conditions.

1.1. Spatial distribution of FC variability

Functional neuroimaging data sets containing retest scans have
been leveraged to investigate inter-individual variability in FC patterns,
after regressing out intra-individual variability. Mueller et al. demon-
strated that this residual variability in FC was greatest in association
cortex including lateral prefrontal regions and the temporoparietal
junction (Mueller et al., 2013). Unsurprisingly, unimodal sensory and
motor regions were the least variable across subjects. At the network
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level, frontoparietal and ventral attention networks exhibited the
largest variability in FC, followed next by the default and dorsal
attention networks. This pattern of results was subsequently confirmed
independently (Chen et al., 2015).

A second wave of studies extended these findings by using
unsupervised test-retest sorting algorithms to match pairs of FC
matrices that belong to a single subject from a group of FC matrices.
Just as the Mueller approach above relied on the relationship between
inter- and intra-subject variability, these matching algorithms require
that a subject's intra-subject FC correlation be greater than that same
subject's inter-subject FC correlation with every other subject (Airan
et al., 2016; Finn and Shen et al., 2015). Using large samples from
different publicly available databases, both studies demonstrated the
important finding that group-level variability contains differences that
are unique and reliable at the individual subject level. Further, they
showed that the majority of FC edges that contributed to the successful
identification of individuals from within a group were located in
heteromodal cortex including the frontoparietal, default, and atten-
tional networks.

1.2. Collection states and FC variability

The effects of acquisition conditions on FC continue to be examined
and debated (Arbabshirani et al., 2013; Cole et al., 2014; Mennes et al.,
2013). The question in the current context is whether inter-individual
differences in FC are more robust under less constrained states such as
rest versus tasks. Shah and colleagues showed that individual patterns
in FC were preserved across multiple task and rest conditions (Shah
et al., 2016). Finn, Shen and colleagues showed that when using an FC-
based identification (i.e., matching) algorithm, the maximal accuracy
(94%) was attained when using rest-rest correlations; accuracy de-
creased to 54–87% when using rest-task or task-task correlations,
suggesting that individual differences are more easily identified during
less constrained states, but are still present in task-based FC data.
These studies indicate that inter-individual differences in FC are not
abolished when using tasks, at least when the tasks are conventional
and discrete such as were used in these studies.

Though the number of studies is currently limited, different results
have been demonstrated using more complex, naturalistic tasks. For
example, Geerligs and colleagues investigated inter-individual variance
during movie watching using a Hitchcock film (Bang! You're Dead)
(2013). This study showed that the least amount of overlap and the
highest amount of FC variance occurred within the movie-task
comparison relative to both the movie-rest and task-rest comparisons,
suggesting that perhaps movies have a unique effect on FC patterns. To
date, it remains unclear which collection states might be most
advantageous for the study of FC patterns that are distinct at the
individual level.

1.3. Movies and FC variability

Due to the significant improvement in compliance regarding head
movement and arousal levels conferred by movie watching in the
scanner (Vanderwal et al., 2015), we wanted to evaluate the effects of
movie watching on BOLD-signal based FC variability. The present
study used two distinct movie-watching conditions (one complex social
movie and our low-processing abstract movie) and eyes-open rest.
Sequence parameters were kept constant across conditions, and
rigorous motion thresholds and correction procedures were used. The
study is divided into two parts. First, we characterize multiple aspects
of FC variability, including analyses of variance across collection states,
measures of within- and between-subject correlations of FC, and the
spatial distribution of inter-individual variability of FC. Based on these
cross-condition comparisons of variability, we predicted that movies
would enhance the ability to detect individual differences in FC that are
unique at the individual level. The second part of the study tested this

hypothesis. We ran an unsupervised test-retest matching algorithm
that used FC matrices to identify individual subjects from among a
group. We also ran the algorithm using different parcellation resolu-
tions, acquisition durations, and percentages of edges used to test
whether these factors differentially affected the two types of movies and
rest. The primary outcome was the accuracy of the identification
algorithm across the three conditions. As such, this study is the first
to show the spatial distribution of inter-individual variability under
naturalistic viewing conditions and to report accuracies of an FC-based
identification algorithm using movies.

2. Materials and methods

2.1. Data collection

Participants. Healthy right-handed adults were recruited from the
community. Exclusion criteria included neurological or psychiatric
diagnoses, use of centrally acting medications, heavy alcohol use, illicit
drug use in the past 6 months, cardiovascular disease, significant visual
or hearing impairment, and self-reporting less than six hours of sleep
per night. Forty-six participants completed two testing sessions with a
one-week interval, and 12 participants self-reported falling asleep
during one or both sessions and were excluded from further analysis.
Three additional subjects were excluded for having fewer than 50%
volumes remaining after scrubbing procedures (see below), leaving our
final cohort at n = 31 (17 females, mean age 24.5 +/− 5.3 years). Data
from a subset (n = 22) were published previously (Vanderwal et al.,
2015). All participants gave written consent and were compensated for
their participation. The study was approved by the Human
Investigations Committee at Yale University School of Medicine.

2.1.1. Procedure
Imaging was performed on a Siemens Trio 3-Tesla scanner with a

32-channel head coil. Standard structural images used an MP-RAGE
sequence (TR=1900 ms, TE=2.52 ms, TI=900 ms, flip angle=9°) yield-
ing 1 mm3 voxel size. Functional data were collected using a single shot
echo planar imaging sequence (TR=2500 ms, TE=30 ms, flip an-
gle=80°, voxel size=3 mm isotropic) across 38 slices. All participants
completed 3 functional scans during which stimuli were presented via
E-Prime software, version 2.0 (Psychology Software Tools, Pittsburgh,
PA). Images were back-projected onto a screen that participants viewed
via a mirror mounted on the head coil. Sound-reducing headphones
over protective earplugs enabled participants to hear the soundtracks.
Three 7 min and 20 s conditions included Inscapes, a nonverbal,
nonsocial series of slowly evolving abstract shapes with a piano score
(detailed description of this movie is provided in Vanderwal et al.,
2015), a clip from the movie Ocean's Eleven (Warner Brothers, 2001,
directed by Steven Soderbergh) referred to here as Oceans, and Rest
(see Fig. 1). Condition order was counter-balanced across participants.
Each condition started and ended with 10 s of fixation; the first 10 s
were dropped for all analyses. Participants were asked to watch the
screen and to stay as still as possible during each condition. Foam
wedges were fitted around the participant's head for comfort and to
decrease movement. Retest sessions occurred 1 week later at the same
time slot whenever possible. Six participants had different time slots
for scan 1 and scan 2, but the 1-week interval was maintained.

2.1.2. Data preprocessing
Standard data preprocessing was performed using the Configurable

Pipeline for the Analysis of Connectomes (C-PAC) including motion
realignment and transformation into Montreal Neurological Institute
(MNI) space using Advanced Normalization Tools (ANTS) (Avants
et al., 2008). ANTS employs a series of sequential transformations to
optimize image registration, beginning with a rigid and affine linear
transformation and ending with a nonlinear diffeomorphic transform
(Symmetrical Normalization or SyN) that maximizes the cross-correla-
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tion within a map. Nuisance signal regression removed linear and
quadratic trends, motion estimates, and COMPCOR with 5 principal
components (Behzadi et al., 2007), and was followed by temporal
filtering (0.008–0.1 Hz). Motion was evaluated using framewise dis-
placement (FD) which quantifies head motion between each volume of
functional data (Power et al., 2012), and volume censoring was used to
mitigate motion artifact with a threshold of 0.2 mm, also removing the
preceding and 2 subsequent volumes (Power et al., 2014, 2015; Yan
et al., 2013). Participants were excluded if they had fewer than 50% (or
86) volumes remaining after scrubbing. Following Finn et al., data were
not spatially smoothed prior to averaging within our cluster-based
regions of interest (ROIs)(Finn and Shen et al., 2015).

2.1.3. Whole-brain FC matrices
All subsequent analyses were based on FC connectivity matrices.

Matrices were constructed using a functional parcellation scheme
comprising 200 ROIs (Craddock et al., 2012). For each subject, we
extracted the mean time series of each ROI and then computed the
Pearson's correlation coefficient between all ROI pairs to produce a
200×200 whole-brain connectivity matrix for each subject for each
condition. Subsequent analyses used only unique ROI pairs (i.e., A-B
and not B-A), leaving 19 900 edges. Correlation coefficients were Fisher
z-transformed, averaged across subjects, and then reverted to r-values
to produce group-level correlation matrices. To qualitatively assess
similarities across conditions in terms of the correlations within and
between large-scale functional networks, we arranged the ROIs on the
matrix according to network membership using the 7-network scheme
(visual, somatomotor, dorsal attention, ventral attention, limbic,
frontoparietal, and default networks; see Fig. 2), defined by Yeo,
Krienen, and colleagues (2011).

2.2. FC variance across conditions

Following previous methods used to assess similarity and difference
in FC matrices across conditions or states (Cole et al., 2014; Geerligs
et al., 2015), we created connectivity matrices for each condition by
averaging the connectivity matrices across participants within each
condition. These matrices are used to visualize the group-level con-
nectivity for movies and Rest. For statistical comparison across
conditions, however, we calculated pairwise Pearson's correlations
between connectivity matrices of the different conditions (i.e. Rest-
Inscapes, Inscapes-Oceans, Oceans-Rest) within a subject. To better
match the noise estimate (see below), we used half the volumes by
computing the Pearson's correlation coefficient between the first half of
condition 1 and the first half of condition 2, as well as the second half of
condition 1 and condition 2. The average of these two correlation
coefficients was squared, and this squared value represents the
proportion of variance that is shared between those conditions. The
remaining variance represents that proportion which differs across
states, such that:

● r = correlation between two conditions.
● r2 = percent shared variance between those conditions, termed

overlap.
● (1 - r2) = total remaining variance, assumed to include both state-

based and noise-based contributions.

To estimate the noise contribution to this between-state variance,
we calculated the split-half correlation within each condition. The split-
half correlation obtained for Rest was used as an estimate of noise
regardless of the pair of conditions being compared, as movies are not
expected to be consistent from the first half to the second half.

● rsh = split-half correlation of Rest.
● (1 - rsh

2) = estimate of percent variance due to noise.

This facilitates the subtraction of noise from the total variance, such
that:

● (1 - r2) - (1 - rsh
2) = state-based variance.

It is important to note two differences between our method and that
outlined in Geerligs et al. (2015). First, all computations were
performed using pairwise correlations between connectivity matrices
of the different conditions within a subject, so we expect lower cross-
condition correlations overall. Second, as explained above, the be-
tween-condition correlation coefficients are based on only half of the
volumes, again likely returning lower r-values than has been shown
previously.

2.2.1. Within- and between-subject FC correlations
Within-subject correlations of FC were computed by first calculat-

ing the Pearson's correlation coefficient of the two scanning sessions'
FC matrices for each subject. To compute the between-subject correla-
tions, we performed the same procedure between one subject and every
other subject within a single scanning session. The pairwise correla-
tions were Fisher's z-transformed, averaged, and reverted to r-values to
provide a single between- and within-subject value for each subject. As
such, these are second-order analyses based on previously calculated
cluster-based measures of functional connectivity (i.e., the FC ma-
trices) and are different from first-order analyses of inter-subject
functional correlations as performed by Simony et al. (2016).1 Due to
the inherent relatedness among these correlations, particularly the
non-independence of the between-subject analysis, we used nonpara-
metric permutation testing (run 10 000 times) to examine the

Fig. 1. Three 7-min conditions. Conditions were a) eyes-open Rest with a static fixation cross; b) Inscapes, a nonverbal, nonsocial, abstract animation designed to maintain engagement
while minimizing cognitive load; and c) a complex verbal and social clip from the vault scene of the action movie Ocean's Eleven. Inscapes can be viewed and downloaded at
headspacestudios.org.

1 Inter-subject functional correlations as defined by Simony et al. characterize
correlations between the full duration BOLD-signal time-course of seed region 1 in
subject A and the time-courses of all regions in subject B, subject C and so forth (2016).
This elegant hybrid approach between intersubject correlations and seed-based FC
analyses can reveal complex inter-regional patterns of correlations that are stimulus-
evoked.
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distribution (Chen et al., 2016).

2.2.2. Spatial distribution of residual inter-individual variability
Following an approach outlined by Mueller et al., we wanted to map

cluster-level inter-individual variability of FC using a method that
accounted for intra-individual variability (2013). First, group-level
total inter-individual variability values were obtained as follows: for
each condition's first scanning session we computed a correlation
coefficient for each ROI (across all 199 of its edges) between all
possible subject pairings. The resulting r-values were subtracted from 1
to convert them to measures of dissimilar variability. Averaging across
subject pairs then yielded an estimate of total inter-individual varia-
bility at each cluster. Next we computed the intra-individual variability
for each condition by performing the same procedure, this time
correlating between each subject's scan 1 and scan 2 FC matrices,
yielding a 200 × 31 (clusters x subjects) matrix, which was subse-
quently averaged across individuals to obtain a group-level map. Using
ordinary least-squares regression, the intra-individual variability was
regressed out of the total inter-individual variability, and the residuals
were taken to represent the residual inter-individual variability. We did
not regress out a measure of technical noise. Residual values were
mapped onto surface space using CARET (Van Essen et al., 2001). To
assess the variability by network, we used the 7-network schema from
Yeo, Krienen and colleagues, averaging the variability across all clusters
belonging to each network (2011). Each cluster was assigned to the
network in which the greatest number of its voxels were present. For
example, if a cluster had 300 voxels in Network 1 and 100 voxels in
Network 2, it was assigned to Network 1.

To test whether regional differences in alignment accuracy might
influence measures of variability, we ran a Searchlight algorithm
modeled closely after the approach described by Kriegeskorte and
colleagues (Kriegeskorte et al., 2006). Spheres (r=15 voxels for
anatomical, and r=5 voxels for functional images) were centered
around each voxel in the brain and Pearson's correlation coefficients

were calculated across the intensity values of each voxel within each
sphere between subject A at scan 1, subject A at scan 2, and so on for
every subject. The r-value obtained for each sphere was transformed to
a measure of variability via subtraction from 1 and assigned to the
center voxel. These 1-r values were averaged within clusters and across
subjects, and surface projected using CARET. For variability in inter-
individual alignment, the same procedure was performed calculating r-
values of spheres placed in subject A's anatomical scan at scanning
session 1 to the corresponding sphere in the MNI brain. Pearson's
correlation coefficients were then calculated between the cluster-based
measures of alignment accuracy and cluster-based measures of inter-
individual variability to assess if alignment was related to our
variability measure.

2.3. Accuracies of identification algorithm

The prediction procedure closely followed methods described else-
where (Finn and Shen et al., 2015). In brief, six databases were created,
one for each of the three conditions for both Scans 1 and 2. Each
database consisted of the Crad-200 FC matrix for each subject for a
given condition (31 matrices per data set). To run the matching
algorithm, two databases were selected at a time. A subject's FC matrix
was selected from one, and the Pearson's correlation coefficient was
then calculated between that matrix and every matrix in the other
database. The two matrices with the highest correlation were deemed
the “matched pair," and the accuracy of the algorithm was simply the
percentage of correct pairs when checked against the known subject
identities. We ran the algorithm across testing sessions and across
conditions, resulting in 30 pairings (e.g., Rest 2-Rest 1, Oceans 2-Rest
2, Oceans 2-Rest 1). Because of our moderate sample size, we wanted
to be sure that accuracies did not reflect chance pairings. We thus
performed nonparametric permutation testing in which false identity
pairs were randomly assigned and the algorithm was run 1000 times to
determine how many times the false pair was identified as being the

Fig. 2. Similarity and variance in FC matrices across movies and Rest (n=31, healthy adults). Pearson's correlation coefficients were calculated between each pair of conditions to
produce the r-value denoted in the matrices. Amongst these moderate correlations, Rest and Inscapes are the most strongly correlated conditions with the highest amount of overlap and
the lowest state difference. The split-half correlation for Inscapes was significantly stronger than either Rest or Oceans. These data align with our previous report suggesting Inscapes is
associated with FC patterns that more closely resemble Rest than those of conventional movies (Vanderwal et al., 2015).
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most strongly correlated. To investigate the role of head motion in the
matching, we computed discrete motion distribution vectors for each
participant based on the framewise displacement time courses across
all 3 conditions and across both scanning sessions. The mean and
standard deviations of the FD across all subjects and conditions was
computed, and 60 bins were set to capture the grand mean +/− 3
standard deviations, and vectors were calculated accordingly. The 1×60
vectors were then used in the same way that the FC matrices were to
run the identification algorithm. This procedure tests whether each
individual's motion characteristics can be used to identify individuals
from within a group, and helps to assess the degree to which motion
might contribute to the FC-based matching algorithm. To examine the
spatial distribution of the edges that contributed most to successful
identification for each condition, we calculated the differential power
(DP) for each edge (Finn and Shen et al., 2015). DP indicates the
proportion of the time a subject is matched to itself rather than to
another subject based on that edge. We then extracted the top 5% of the
DP values throughout the brain, and calculated the percentage of edges
within each network that met that threshold.

2.3.1. Parcellation resolution
To test if the resolution of the parcellation had a differential effect

on identification accuracy across conditions, we parcellated the data at
all of the 43 resolutions defined in a publicly available atlas that used a
spatially constrained spectral clustering approach of independent
resting state data (Craddock et al., 2012). The range of the number
of clusters was 10–950. We then ran the identification algorithm using
each parcellation on the Scan 2-Scan 1 within-condition pairings. All
subsequent analyses used the Crad-200 parcellation and only the Scan
2-Scan 1 within-condition pairings.

2.3.2. Scan duration
To test if shorter scan durations affected the identification accuracy

of one condition more than another, we ran the same matching
algorithm, varying the amount of data used between two volumes
and the full 172 vol run (unscrubbed data were used only for this
analysis), starting from the beginning of the run and adding sequential
TRs one at a time.

2.3.3. Number of edges
To test if one of the conditions required fewer edges in order to

make the correct identity matches, we sequentially tested the algorithm
using increasing numbers of edges. To dictate the order in which we
added edges, we rank-ordered the edges from least contributory
(lowest DP) to most contributory (highest DP) within each condition.
Next, we ran the matching algorithm using only the lowest 0.5% of
edges, and successively repeated this procedure adding an additional
0.5% at each increment until 100% of the edges were used.

3. Results

3.1. Compliance

Twelve excluded subjects self-reported falling asleep during 14 Rest
runs, 7 Inscapes runs, and zero Oceans runs. Head motion at the first
scanning session was significantly lower for Inscapes relative to both
Rest and Oceans (one-way repeated measures ANOVA, F(2,30)=4.899, p
< 0.0001, post hoc two-tailed t-test, Inscapes-Rest p=0.0003, Inscapes-
Oceans p=0.01, Oceans-Rest p=0.1). At the second scanning session,
no significant differences in head motion were found (one-way
repeated measures ANOVA, F(2,30)=1.32, p=0.27). See Supplementary
Fig 1 for the spread of the FD data. After volume-censoring, the
following mean number of volumes remained: Rest 1=152, Inscapes
1=164, Oceans 1=160, Rest 2=155, Inscapes 2=153, and Oceans
2=159.

3.2. FC variance across conditions

Within-condition split-half correlations for FC matrices were as
follows: Rest=0.62, Inscapes=0.65, Oceans=0.59 (see Fig. 2). There
was a significant effect of condition on split-half correlation (one-way
repeated measures ANOVA, F(2,30)=5.844, p=0.0048). Follow-up
paired t-tests showed no significant difference in the split-half correla-
tions between Rest and Inscapes (t(30)=1.911, p=0.66) or between Rest
and Oceans (t(30)=1.502, p=0.1435), with the significant difference
found between the split-halves of the two movie conditions
(t(30)=3.404, p=0.0019). Cross-condition comparisons using half of
the volumes showed moderate correlations with significant differences
across all comparisons, with Rest-Inscapes r=0.52, Inscapes-Oceans
r=0.48 and Oceans-Rest r=0.45 (one-way repeated measures ANOVA,
F(2,30)=20.88, p < 0.0001, post hoc two-tailed t-test, Inscapes-Rest vs.
Inscapes-Oceans p=0.0013, Rest-Inscapes vs. Rest-Oceans p < 0.0001,
and Oceans-Rest vs. Oceans-Inscapes p=0.0043). These r-values are
lower than those reported by Geerligs et al., possibly because we
maintained within-subject pairings and used only half of the volumes
when calculating the cross-condition correlations. Rest and Inscapes
had the highest overlap at 27% and the lowest state-based difference
(after subtracting out a noise estimate) of 11%.

3.3. Within- and between-subject FC correlations

For within-subject correlations, movies were stronger than Rest,
but were not different from each other (nonparametric permutation
testing Inscapes-Rest p=0.0119, Oceans-Rest p=0.0018, Oceans-
Inscapes p=0.5851). For between-subject correlations, movies were
again stronger than Rest, and were again not significantly different
from each other (nonparametric permutation testing Inscapes-Rest
p=0.0008, Oceans-Rest p < 0.0001, Oceans-Inscapes p=0.4147, see
Fig. 3).

3.4. Spatial distribution of FC variability

Residual inter-individual FC variability (by cluster) demonstrated a
nonuniform spatial distribution with higher variability in the lateral
prefrontal lobes, temporoparietal junctions, and along regions of the
lateral temporal lobes (see Fig. 4). Lower variability was found in
primary sensory and motor cortices. This pattern aligns with previous
reports (Mueller et al.) and was similar across both movies and Rest.
Inscapes had higher variability in temporal regions, while Oceans had
higher variability in prefrontal regions. When calculated for each of 7
networks, FC variability was highest in the frontoparietal network and
lowest in the visual and somatomotor networks across conditions.
Within the frontoparietal network, variability was highest for Oceans.
The Searchlight algorithm we ran to examine the spatial distribution of
both inter- and intra-subject variability in alignment accuracy showed
that alignment overall had strong correlations and low variability,
explaining a maximum of 4% of the variance in Fig. 4. Qualitatively, the
alignment variability maps did not resemble the inter-individual
variability maps, and in particular, the frontoparietal cortex was
aligned well (i.e. with low variability) both within and between subjects
(See Supplementary Fig 2 for results of the Searchlight analyses). We
conclude that the overall spatial pattern of inter-individual variability
in FC is not driven by underlying spatial differences in alignment
accuracy at either the inter- or intra-individual level.

3.5. Accuracies of identification algorithm

We first tested prediction accuracy using the Crad-200 parcellation,
and found high accuracies across and within conditions with a range of
61–100% (see Fig. 5). Oceans attained 100% accuracy, and in general, the
highest accuracies were associated with pairings that included movies.
Importantly, high accuracies were attained for cross-condition pairings,
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indicating that individually distinct patterns in FC persisted across
conditions. The permutation testing (performed 1000 times to quantify
the percentage of time the algorithm matched a randomly assigned “false
identity" pairing) had a mean accuracy of 0.44% (with maximal accuracy
of 9.7%) for Scan 2 to Scan 1 pairings, and 0.68% (with maximal accuracy
of 6.7%) for Scan 1 to Scan 2 pairings. When using motion distribution to
match subjects, accuracies ranged from 0% to 19%. Results for permuta-
tion testing and motion distribution are shown in Supplementary
Materials. When assessing the network distribution of the top 5% of
contributory edges, we found that across conditions, the highest propor-
tion of these edges was found in the frontoparietal network, followed by
the ventral and dorsal attention networks.

We also performed a post-hoc analysis in which we ran the
identification algorithm again using BOLD-signal time courses instead
of FC. The time-course based algorithm yielded accuracies of 0–58%
(Supplementary Fig 4). Notably, all pairings using Inscapes and Rest
yielded accuracies of 23% or lower, and Oceans-Oceans pairings
attained 58%. These data indicate that FC patterns (as opposed to
first-order BOLD-signal time courses themselves) drive the high
percentages attained in the FC-based algorithm shown in Fig. 5,
particularly for Inscapes and Rest.

3.5.1. Parcellation resolution
When tested at different parcellation resolutions, the within-con-

dition Scan 2-Scan 1 identification accuracies improved with higher
resolutions, as expected (Fig. 6a). Varying the resolution had differ-
ential effects by condition: Oceans attained 100% accuracy at 120
clusters, Inscapes at 500 clusters, and Rest hit a ceiling accuracy of 97%
at 550 clusters. Above 600 clusters, cross-condition differences in
matching accuracy appear to collapse.

3.5.2. Scan duration
Also as expected, longer scan durations positively affected the

accuracy of the algorithm. Oceans reached 100% accuracy at 109
volumes, Inscapes reached maximal accuracy of 97% at 115 volumes,
and Rest reached a ceiling accuracy of 90% at 165 volumes (Fig. 6b).

3.5.3. Number of edges used
Again, including higher numbers of edges produced higher predic-

tion accuracies across all conditions, as was expected. Overall, movies
had higher accuracies than Rest at all numbers of edges included
(Fig. 6c).

4. Discussion

4.1. Accuracies of identification algorithm for movies and rest

This study investigated the effects of movie watching on individual
differences in FC. We showed that an unsupervised, FC-based test-
retest matching algorithm that identifies subjects from within a group
performed well using data acquired during both movies and Rest, and
that the highest accuracies were attained using movies.

Overall accuracies of the matching algorithm ranged from 61% to
100%. These results are in-line with data from Finn, Shen and
colleagues who reported accuracies of 54–94% in a larger sample
using rest and task (Finn and Shen et al., 2015). The highest accuracy
in our data (100%) was attained when matching FC matrices between
scan sessions of Oceans, with Inscapes reaching 97%, and Rest 90%.
The pattern of these accuracy relationships (Oceans > Inscapes > Rest)
held true across varying scan durations and number of edges used. We
conclude that relative to task-free resting state conditions, movie
watching preserves—and possibly enhances—the ability to detect
differences in FC patterns that are distinct at the individual level.

4.2. Variability in FC of different acquisition conditions

The matching algorithm used is based on correlations of FC
matrices between separate scanning sessions. Consequently, we would
expect within-subject correlations to play a substantial role in the
success of the algorithm. When examining cluster-wise, whole-brain
FC, our data showed that movies had significantly stronger within- and
between-subject correlations relative to Rest.

Further, previous work has shown that FC edges which contributed
most to successful identification matches were found in the frontoparietal
network (Finn and Shen et al., 2015). In our data, variability within the
frontoparietal network was greatest for Oceans, perhaps contributing to
the observed 100% accuracy attained for the Oceans-Oceans pairings. In
general, the spatial distribution of inter-individual variability in FC during
Rest and movies followed the same pattern as had been previously
reported during Rest: the lowest variability occurred in primary motor
and sensory cortices with higher variability in heteromodal cortex
involving the prefrontal and temporal cortices (Chen et al., 2015;
Mueller et al., 2013). These data suggest that the spatial distribution of
residual inter-individual variability observed during Rest is not drastically
shifted by movie watching, and more specifically, that variability in the
frontoparietal network is high across conditions.

4.3. Individually distinct FC and naturalistic paradigms

To date, the majority of studies utilizing naturalistic paradigms
have focused on the concerted nature of BOLD-signal changes evoked
by movie watching that have been shown to involve large areas of the
cortex (Hasson et al., 2004, 2010; Kauppi et al., 2010). Intuitively, one
might assume that because of this shared activation across subjects,
patterns of FC would be less distinctive at the individual level. Our data
indicate that this is not the case as the highest accuracies of the
matching algorithm were attained using movie-watching data. In

Fig. 3. Within- and between-subject FC correlations. Both movies had significantly
greater within-subject correlations relative to Rest, with no significant difference between
movies. The same pattern was found for between-subject correlations, with movies
greater than Rest (*=p < 0.05, **=p < 0.01, ***=p < 0.001, ****=p < 0.0001, via permuta-
tion testing).
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addition to the high within-subject FC correlations discussed above,
another possible contributing factor to this pattern is that concerted
activity across subjects in multiple voxels enables individually distinct
patterns of FC to “stand out" more. In other words, we hypothesize that
movie watching may not itself evoke individual differences in func-
tional neural responses, but that the whole-brain processing that
occurs during naturalistic paradigms across subjects enhances the
detection of individually distinct FC patterns. This seems plausible
given the fact that cross-condition pairings in our data also attained
high accuracies, indicating that the same individually distinct patterns
are maintained across conditions.

Relatedly, Papageorgiou et al. suggested that complex stimuli might
elicit useful shifts in whole-brain signal-to-noise ratios when they used
a highly engaging task in which subjects received real-time feedback to
their neural responses during a silent counting task (Papageorgiou
et al., 2013). They posited that frontoparietal regions and the insula
regulated global processes during engaging conditions, conferring an
improvement in signal-to-noise ratios. When taken together with data
indicating that individual variability is highest in frontoparietal net-
works (Mueller et al., 2013), and that matching algorithms rely heavily
on edges contained in the frontoparietal network (Finn and Shen et al.,
2015), we suggest that during naturalistic conditions, the frontopar-
ietal network may play a dual role in the identification of individually
distinct FC patterns. First, frontoparietal FC itself may comprise
individually distinct differences in functional connectivity and/or
functional mapping, and second, frontoparietal control may cause an
advantageous shift in broader processes enhancing the detection of
individually distinct FC patterns. Whatever the mechanism, studies to
date, including the data presented here, indicate that the frontoparietal
network plays a key role in the detection of individual differences in FC.

4.4. Compliance

The major compliance advantage of using movies in healthy adult
populations relates to arousal levels. In this study, subjects self-
reported falling asleep during 14 Rest runs, 7 Inscapes runs, and zero
runs of Oceans. Head movement at the first scan was significantly
better during Inscapes relative to both Oceans and Rest. However, no
differences in head movement were found at the second session. We
speculate that habituation and loss of novelty may have contributed to
this null finding.

Because head motion has previously been shown to be more trait-
like than state-like (Couvy-Duchesne et al., 2014; Siegel et al., 2016),
we were concerned that head motion might contribute to the accuracy
of the matching algorithm. When using motion distribution as the basis
for an identity algorithm (i.e., with no FC measures), accuracies ranged
from 0% to 19%, which is higher than chance but much lower than the
accuracies attained using FC measures (61–100%). We conclude that
motion likely contributes to the matching of FC matrices, but that it
does not account for the primary finding that naturalistic conditions
enable the detection of FC differences at the individual level.

4.5. Limitations and future directions

This study has a number of important limitations. The sample size
was 31, and because of how the test-retest matching algorithm works,
accuracies likely vary critically based on sample size. Future work
replicating the movie watching findings in a larger cohort is indicated.
The study design also did not include a rich phenotypic assessment,
and consequently, we were not able to test for correlations between FC
variability during movie watching and clinically relevant behaviors or
traits. Because movies appear to enhance the ability to detect individual
differences in FC, some brain-behavior relationships may be identified
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Fig. 4. Spatial distribution of inter-individual variability in FC (n=31, healthy adults). Inter-individual variability was quantified for FC of each cluster after least-squares regression to
correct for underlying intra-individual variability. The results of this regression are depicted centered around zero so that warm colors indicate that inter-individual variability is greater
than intra-individual variability, and cool colors indicate that intra-individual variability is greater than inter-individual variability. Consistent with previous work (Mueller et al., 2013),
FC variability is lowest in primary sensory and motor regions, and highest in heteromodal regions such as lateral prefrontal cortices and the temporoparietal junctions. Qualitatively, this
pattern of spatial distribution occurs across all three scanning conditions. Variability by network was highest in the frontoparietal network and lowest in visual and somatomotor
networks. V=visual, SM=somatomotor, DA=dorsal attention, VA=ventral attention, L=limbic, FP=frontoparietal, D=default, based on Yeo, Krienen et al. (2011).
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using naturalistic paradigms that are not detectable using conventional
tasks. For example, a pediatric study was able to identify math-based
brain-behavior relationships using fMRI data collected during Sesame
Street clips that were not detected using a well-validated conventional
fMRI math task (Cantlon and Li, 2013).

Further, because we saw cross-condition differences in the number
of participants self-reporting sleep, it is likely that cross-condition
differences in drowsiness and arousal were also present in the
remaining cohort. A recent paper reported that different arousal levels
during movie watching modulated the similarity of FC patterns across
subjects (Jang et al., 2017). Consequently, the cross-condition differ-
ences in classification may be driven by differences in arousal. Future

work using electroencephalography and/or other physiological mea-
sures of arousal during movie watching and rest would help address
this issue. Similarly, though the head motion in our sample was low
and we implemented rigorous volume censoring, since we did not
utilize global signal regression, it is still possible that cross-condition
differences in residual artifact contribute to the classification results
(Ciric et al., 2017; Geerligs et al., 2017; Power et al., 2017). Cross-
condition differences in temporal dynamics such as rates of network
switching are also known to exist under different conditions (Chai
et al., 2016; Emerson et al., 2015; Simony et al., 2016) and such
differences may contribute to our results, or to individual differences in
FC themselves (Liao et al., 2017; Xie et al., 2017). Finally, the cross-

Fig. 5. a. Accuracies of unsupervised test-retest matching algorithm based on FC matrices (n=31, healthy adults). Individual subjects were correctly identified by the unsupervised
algorithm across all conditions, with accuracies ranging from 61% to 100%. Overall, the highest accuracies were associated with pairings that involved movies. High accuracies were
attained in cross-condition matches, indicating that individual subjects have distinct FC patterns that persist across conditions. b. For all three conditions, the highest proportion of the
top 5% of edges contributing to correct identifications were located in the frontoparietal network, followed by the ventral and dorsal attention networks. V=visual, SM=somatomotor,
DA=dorsal attention, VA=ventral attention, L=limbic, FP=frontoparietal, D=default, masks for networks based on Yeo et al. (2011).
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condition accuracy results likely contain individual differences in
anatomy and/or functional mapping (Brett et al., 2002; Frost and
Goebel, 2012; Shah et al., 2016; Zilles and Amunts, 2013). This
interpretation makes sense particularly when looking at the similarity
of accuracies across conditions that occurs at higher parcellation
resolutions (Fig. 6a). Future studies that incorporate multi-modal or
group-weighted parcellation schema (Glasser et al., 2016; Mejia et al.,
2015) or explorations of FC in non-anatomical space (Guntupalli et al.,
2016) might be combined with the use of naturalistic viewing para-
digms to further enhance the sensitivity of fcMRI to identify individu-
ally distinct patterns of FC.

4.6. Conclusions

1. Movies preserve, and possibly enhance, the ability to detect patterns
in FC that are unique at the individual level.

2. Movies had stronger within- and between-subject correlations in FC
relative to Rest; inter-individual variability in the frontoparietal
network was highest during Oceans. These factors may underlie the
observed 100% matching accuracy attained using Oceans.

3. Compliance benefits of using movies with healthy adults center
around arousal levels, with half as many subjects self-reporting sleep
during Inscapes relative to Rest, and no subjects self-reporting sleep
during Oceans. Significant head motion advantages for healthy
adults were found, but only at the first exposure to the stimuli.

4. Movies may be advantageous for future efforts to identify brain-
behavior correlations in pediatric and psychiatric populations.
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